Citation: | Aytekin Gülle. On the Numerical Solution of Quasilinear Wave Equation With Strong Dissipative Term[J]. Applied Mathematics and Mechanics, 2004, 25(7): 735-740. |
[1] |
Lagnese J L.General boundary-value problems for differential equations of Sobolev type[J].SIAM, J Math Anal,1972,3:105—119. doi: 10.1137/0503013
|
[2] |
Leopold H.Periodic solutions to a one-dimensional strongly nonlinear wave equation with strong dissipation[J].Czechoslovak Math J,1985,35(110):278—293.
|
[3] |
Webb G F.Existence and asymptotic behavior for a strongly damped nonlinear wave equation[J].Canad J Math,1980,32:631—643. doi: 10.4153/CJM-1980-049-5
|
[4] |
Lebedev V I.The method of difference for the equations of Sobolev type[J].Dokl Acad Sci USSR,1957,114:1166—1169.
|
[5] |
Amiraliyev G M.Towards the numerical solution of the perodical on time problem for pseudo-parabolic equation[J].Numerical Methods of Analysis BAKU State University,1988,3—8.
|
[6] |
Amiraliyev G M.On difference schemes for problems of the theory of dispersive waves[J].Soviet Math Dokl,1991,42:235—238.
|
[7] |
Amiraliyev G M.Investigation of the difference schemes for the quasi-linear Sobolev equations[J].Differential Equations,1987,23:1453—1455.(in Russian)
|