Lin Bai-song. Anisotropic Plastic Stress Fields at a Slowly Propagating Crack Tip[J]. Applied Mathematics and Mechanics, 1989, 10(8): 721-727.
Citation: Lin Bai-song. Anisotropic Plastic Stress Fields at a Slowly Propagating Crack Tip[J]. Applied Mathematics and Mechanics, 1989, 10(8): 721-727.

Anisotropic Plastic Stress Fields at a Slowly Propagating Crack Tip

  • Received Date: 1989-10-08
  • Publish Date: 1989-08-15
  • Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastiestress Jields at the slowly steadyhe slowly steady propagatin tips of plane and anti-phane strain,Applying these general analytical expressions to the concrete cracks the attchvtical expressions of anisotropie plastic stress fields at the slowly steady propagating tips of Motle I and Motle III cracks are obtained. For the isolropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfeeby plastic mress fields.
  • loading
  • [1]
    Chitalcy,A.P.and F.A.McClinlock,Elastic-Plastic mechanics of steady crack growth under anti-plane strain,J.Mech.Phys.Solids.19,3(1971),147-163.
    [2]
    Слепян Л.И.,Растущая трещина лри плоской деформации упруго-пластическоготел,Изэ.АН СССР МТТ,9,1(1974)57-67
    [3]
    Rice J.R.,W.T.Drugan and T.L.Sham,Elastic-plastic analysis of growing crack,ASTM STP 700(1980),189-221.
    [4]
    高玉臣,理想塑性介质中裂纹定常扩展的弹塑性场,力学学报,1(1980),18-56
    [5]
    Hill,R..The Mathematical Theory of plasticity,Oxford(1950).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1672) PDF downloads(544) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return