Citation: | Li De-ming, Huang Ke-lei. Hopf Bifurcation in a Three-Dimensional System[J]. Applied Mathematics and Mechanics, 1989, 10(11): 816-968. |
[1] |
李炳熙,《高维动力系统的周期轨道:理论与应用》,上海科技出版社(1984).
|
[2] |
Golubitsky,M.and D.G.Schaeffer,Singularities and Groups in Bifurcation Theory,Vol.1. Springer-Verlag,New York(1985).
|
[3] |
Golubitsky,M.and W.F.Langford,Classification and unfolding of degenerate Hopf bifureations,J.Diff.Eqs.,41(1981),375-415.
|
[4] |
Golubitsky,M.and I.Stewart,Symmetry and Stability in Taylor-Couette flow,SIAM J,Math.Anal.,17(1986),249-288.
|
[5] |
Chen,Y.S.and W.F.Langford,Subharmonic resonance in nonlinear Mathieu equations,天津大学学习班资料(1987).
|
[6] |
Abragram,A.The Principle of Nuclear Magnetism,Oxford Univ.Press,New York(1961).
|
[7] |
Sherman,S.,A third-order nonlinear system arising from a nuclear spin generator,Contr.Diff.Eqs.2(1963),197-227.
|