LIU Fa-gui, KONG De-xing. Global Existence and Blow-up Phenomena of Classical Solutions for the System of Compressible Adiabatic Flow Through Porous Media[J]. Applied Mathematics and Mechanics, 2004, 25(6): 643-652.
Citation: LIU Fa-gui, KONG De-xing. Global Existence and Blow-up Phenomena of Classical Solutions for the System of Compressible Adiabatic Flow Through Porous Media[J]. Applied Mathematics and Mechanics, 2004, 25(6): 643-652.

Global Existence and Blow-up Phenomena of Classical Solutions for the System of Compressible Adiabatic Flow Through Porous Media

  • Received Date: 2001-11-27
  • Rev Recd Date: 2003-12-08
  • Publish Date: 2004-06-15
  • By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small' solution.
  • loading
  • [1]
    LIU Tai-ping. Development of singularities in the nonlinear wave for quasilinear partial differential equations[J].J Differential Equations,1979,33(2):92—111. doi: 10.1016/0022-0396(79)90082-2
    [2]
    ZHAO Yan-chun. Global smooth solutions for one dimensional gas dynamics systems[R]. IMA Preprint #545,University of Minnesuta,1989.
    [3]
    KONG De-xing.Cauchy Problem for Quasilinear Hyperbolic Systems[M].MSJ Memoirs No 6.Tokyo:the Mathematical Society of Japan,2000.
    [4]
    KONG De-xing.Life-span of the classical solutions of nonlinear hyperbolic systems[J].J Partial Differential Equations,1996,11(2):221—240.
    [5]
    Nishida T.Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics[M].Paris-Sud:Publications Mathématiqées D'osay 78-02,1978.
    [6]
    Slemrod M. Instability of steady shearing flows in a nonlinear viscolastic fluid[J].Arch Rational Mech Anal,1978,68(3):211—225.
    [7]
    LIN Long-wei,ZHENG Yong-shu.Existence and nonexistence of global smooth solutions for quasilinear hyperbolic system[J].Chinese Ann Math,Ser B,1988,9(4):372—377.
    [8]
    王剑华,李才中.具耗散拟线性双曲型方程组整体光滑可解性与奇性形成[J].数学年刊,A辑,1988,9(5):509—523.
    [9]
    HSIAO Ling,Serre D.Global existence of solutions for the systems of compressible adiabatic flow through porous media[J].SIAM J Math Anal,1996,27(1):70—77. doi: 10.1137/S0036141094267078
    [10]
    郑永树.具耗散一维气体动力学方程组整体光滑解[J].数学年刊,A辑,1996,17(2):155—162.
    [11]
    KONG De-xing. Maximum principles for quasilinear hyperbolic systems and its applications[J].Nonlinear Analysis: Theory, Methods and Applications,1998,32(9):871—880. doi: 10.1016/S0362-546X(97)00534-8
    [12]
    LI Ta-tsien,YU Wen-ci.Boundary Value Problems for Quasilinear Hyperbolic Systems[M].Mathematics Series V,Duke University Press,1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3140) PDF downloads(854) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return