Citation: | Lin Peng-cheng, Bai Qing-yuan. Numerical Solution of Nonlinear Ordinary Differential Equation for a Turning Point Problem[J]. Applied Mathematics and Mechanics, 1990, 11(11): 989-998. |
[1] |
江福汝,关于具转向点的一类常微分方程的边值问题,应用数学和力学,1,2 (1980), 201-203.
|
[2] |
林鹏程、颜鹏翔,无共振转向点问题的数值解,应用数学和力学,8, 6 (1986), 423-429.
|
[3] |
Liseikin,V.D.,Numerical solution for a singular perturbation equation with turning point,J.Comp.Math,and Math.Phys.,24,12(1984),1812-1818.(in Russian)
|
[4] |
Niijima,K.,A uniformly convergent difference scheme for a semilihear singular perturbation problem,Numer.Math.,43,2(1984),175-198.
|
[5] |
Dorr,F.W.,Singular perturbation of nonlinear boundary value problems with turning points,J.Math.Anal.Appl.,29,2(1970),273-293.
|
[6] |
Farrell,P.A.,A uniformly convergent difference scheme for turning point problems,The First Conference on Boundary and Interior Layers-Computational and Asymptotic Methods,Dublin,Ireland(1980).
|
[7] |
Stynes,M.and E O'Riordan,L1 and L∞ uniform convergence of a difference scheme for a semilinear singular perturbation problem,Numer.Math.,50,4(1987),519-531.
|
[8] |
Berger,A.Z.,H.D.Han and R.E.Kellogg,A priori estimates and analysis of a numerical method for a turning point problem,Math.Comp.,42,166(1984),465-492.
|
[9] |
Niijima,K.,Error estimates for an exponentially fitted difference scheme for a singular perturbation problem Ⅰ,Computational and Asymptotic Methods for Boundary and Interior Layers,Proc.BAIL Ⅱ Short Course(1982),63-67.
|