Lu Qin-he, Xu Zheng-fan, Lin Fu-qin, Liu Zeng-rong. The Global Bifurcation Structure of a Kind of Digit Mapping[J]. Applied Mathematics and Mechanics, 1991, 12(2): 185-193.
Citation:
Lu Qin-he, Xu Zheng-fan, Lin Fu-qin, Liu Zeng-rong. The Global Bifurcation Structure of a Kind of Digit Mapping[J]. Applied Mathematics and Mechanics, 1991, 12(2): 185-193.
Lu Qin-he, Xu Zheng-fan, Lin Fu-qin, Liu Zeng-rong. The Global Bifurcation Structure of a Kind of Digit Mapping[J]. Applied Mathematics and Mechanics, 1991, 12(2): 185-193.
Citation:
Lu Qin-he, Xu Zheng-fan, Lin Fu-qin, Liu Zeng-rong. The Global Bifurcation Structure of a Kind of Digit Mapping[J]. Applied Mathematics and Mechanics, 1991, 12(2): 185-193.
The global structure of the mapping Tn:x→[x2]n is studied. The symmetric unconnected substructures of T2 is coincident with [1] by computer, but for n=3 the symmetry of these substructures vanishes. As n is increasing, the global bifurcation structure of T2 is shown. Finally, similar results for the mapping Tn:x→[μx2]n are also proved.