Ji Zhen-yi. The General Solution for Axial Symmetrical Bending of Nonhomogeneous Circular Plates Resting on an Elastc Foundation[J]. Applied Mathematics and Mechanics, 1991, 12(9): 813-820.
Citation: Ji Zhen-yi. The General Solution for Axial Symmetrical Bending of Nonhomogeneous Circular Plates Resting on an Elastc Foundation[J]. Applied Mathematics and Mechanics, 1991, 12(9): 813-820.

The General Solution for Axial Symmetrical Bending of Nonhomogeneous Circular Plates Resting on an Elastc Foundation

  • Received Date: 1989-09-16
  • Publish Date: 1991-09-15
  • In this paper,a new method,the exact analytic method,is presented on the basis of step reduction method.By this method,the general solution for the bending of nonhomogenous circular plates and circular plates with a circular hole at the center resting,on an elastfc foundation is obtained under arbitrary axial symmetrical loads' and boundary conditions.The uniform convergence of the solution is proved.This general solution can also he applied directly to the bending of circular plates without elastic foundation.Finally,it is only necessary to solve a set of binary linear algebraic equation.Numerical examples are given at the end of this paper which indicate satisfactory results of stress resultants and displacements can be obtained by the present method.
  • loading
  • [1]
    Timoshenko,S.and S.Woinowsky-krieger,Theory of plates and shells,McGraw-Hill book company(1959),Second Edition.
    [2]
    沈锡英、郑大同,应用边界元素法计算文克勒尔地基圆板.工程力学,2(2)(1985),10-19.
    [3]
    文王华,求解弹性地基圆板问题的点沉法,工程力学,4(2)(1987),18-26.
    [4]
    叶开沉,非均匀变厚度弹性力学的若干问题的一般解,N,非均匀变厚度梁的弯曲,稳定和自由振动,兰州大学学报,力学专号,1(1979),133-157.
    [5]
    纪振义.阶梯折算法的收敛条件及其一般格式,应用数学和力学,9(12)(1988),1117-1127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2274) PDF downloads(474) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return