Citation: | S. L. Lau, Xu Zhao. On Internal Resonance of Nonlinear Vibrating Systems with Many Degrees of Freedom[J]. Applied Mathematics and Mechanics, 1992, 13(1): 27-34. |
[1] |
Bogoliubov,N.N.,and J.A.Mitropolsky,Asymptotic Methods in the Theory of Nonlinear Vibrations,Moscow,Nauka(1974).
|
[2] |
Navfeh.A.H.,and D.T.Mook.Nonlinear Osciltations,Wiley,New York(1979).
|
[3] |
Mickens,R.E.,A regular perturbation technique for nonlinearly coupled oscillators in resonance,Journal ofSoundand Vibration,81(1982),307-310.
|
[4] |
Sptysl,H.,Internal resonance of non-linear autonomous vibrating system with two degrees of freedom,Journal of Sound and Vibration,112(1987),63-67.
|
[5] |
Xu Zhao and Zhang Ling-qi,Asymptotic method for analysis of non-linear systems with two parameters,Acta Mathematica Scientia,6(1986),453-462.
|
[6] |
Pavlidis,T.,Biological Oscillators:Their Mathematical Analysis,Academic Press,New York(1973).
|
[7] |
Rand,R.H.,and P.J.Holmes,Bifurcation of periodic motions in two weakly coupled van der Poi oscillators,Int.J.Non-Linear Mechanics,15(1980),387-399.
|
[8] |
Lau.S.L.,Y.K.Cheung and S.Y.Wu,A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems,ASME.J.Appl.Mech.,49(1982),849-853.
|
[9] |
Xu Jian-xue,R.S.Guttalu,and C.S.Hsu,Domains of attraction for multiple limit cycles of coupled van der Poi equations by simple cell mappings,Int.J.Non-Linear Mech.,20(1985),507-517.
|