Citation: | Zhang Wei, Huo Quan-zhong, Li Li. Heteroclinic Orbit and Subharmonic Bifurcations and Chaos of Nonlinear Oscillator[J]. Applied Mathematics and Mechanics, 1992, 13(3): 199-208. |
[1] |
Holmes, P. J. and R. A. Rand, Phase portraits and bifurcations of the nonlinear oscillator:x+(a+γx2)x-βx+δx3=0 Int. J. Nonlinear Mech., 15, 1 (1980), 449-458.
|
[2] |
Greenspan B. D. and P. J. Holmes, Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators, SIAM J. Math. Anal., 15 (1984), 69-97.
|
[3] |
唐建宁、刘曾荣,2-jet和3-jet 系统中的复杂分叉现象,应用数学学报,11(2) (1988), 173-181
|
[4] |
Guckenheimer, J. and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York (1983).
|
[5] |
Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
|
[6] |
Greenspan, B. D., and P. J. Holems, Homoclinic orbits, subharmonics and global bifurcations in forced oscillations, Nonlinear Dynamics and Turbulence, G. Barenblatt, G. Ioose, and D. D. Joseph(eds), Pitman, London, (1983), 172-214.
|
[7] |
Melnikov, V. K., On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc., 12 (1963), 1-57.
|
[8] |
Holmes, P. J., Averaging and chaotic motions in forced oscillations, SIAM J. Appl. Math., 38(1980), 65-80.
|
[9] |
Hale, J. K., Ordinary Differential Equations, 2nd Edition, Kreiger Publ. Co. (1980).
|
[10] |
Hale, J. K. and X.-B. Lin, Heteroclinic orbits for retarded functional differential equation,J. Diff. Eqs., 65 (1986), 175-202.
|
[11] |
Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press (1980).
|
[12] |
万世栋、李继彬,Jacobi椭圆函数有理式的Fourier级数.应用数学和力学,9 (6) (1988),499-513
|
[13] |
Brunsden, V., J. Cortell and P. J. Holmes, Power spectra of chaotic vibrations of a buckled beam, J. Sound Vib., 130, 1(1989), 1-25.
|