Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics[J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810.
Citation: Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics[J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810.

Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics

  • Received Date: 1988-06-28
  • Publish Date: 1992-09-15
  • From the concept of four-dimensional space and under the four kinds of time limit conditions, some general theorems for elastodynamics are developed, such as the principle of possible work action, the virtual displacement principle, the virtual stress-momentum principle, the reciprocal theorems and the related theorems of time terminal conditions derived from it. The variational principles of potential energy action and complementary energy action, the H-W principles, the H-R principles and the constitutive variational principles for elastodynamics are obtained. Hamilton's principle, Toupin's work and the formulations of Ref. [5],[17]-[24] may be regarded as some special cases of the general principles given in the paper. By considering three cases: piecewise space-time domain, piecewise space domain, piecewise time domain, the piecewise variational principles including the potential, the complementary and the mixed energy action fashions are given. Finally, the general formulation of piecewise variational principles is derived. If the time dimension is not considered, the formulations obtained in the paper will become the corresponding ones for elastostatics.
  • loading
  • [1]
    Love,A.E.H,A Treatise on the Mathematical Theory of Elasticity,Cambridge University Press,Cambridge,1st Ed.(1892);4th Ed.(1927);Reprinted,Dover Publications,New York(1963).
    [2]
    钱伟长、叶开沅,《弹性力学》,科学出版社,北京(1956).
    [3]
    Washizu,K.,Variational Methods in Elasticity and Plasticity,Pergamon Press,New York 1st Ed.(1968);2nd Ed.(1975);3rd Ed.(1982).
    [4]
    Розин Л.А./Вариационые Цостонвки Задач для Упруих систем,Изд.ЛГУ,Ленкыград(1978).
    [5]
    Oden,J.T.,and J.N.Reddy,Variational Methods in TheoreticalMechanics,Springer-Verlag,New York,1st Ed.(1976);2nd Ed.(1983).
    [6]
    钱伟长,弹性理论中广义变分原理的研究及其在有限元计算中的应用,力学与实践(1979),(1),16-24,1(2),18-27.
    [7]
    钱伟长,《变分法及有限元》.科学出版社,北京(1980).
    [8]
    郭仲衡,《非线有弹性理论》,科学出版社,北京(1980).
    [9]
    胡海昌,《弹性力学的变分原理及其应用》,科学出版社,北京(1981).
    [10]
    龙驭球,弹性力学中的分区广义变分原理,上海力学,2(2)(1981),1-9.
    [11]
    Rayleigh,L.,Some general theorems relating to vibration,Proc.London Math.Soc.,4(1873),357-368.
    [12]
    Graffi,D.,Sui teoremi di reeiprocita nei fenomeni dipendenti dal tempo,Annali di Matematica,18(1939),173-200.
    [13]
    Andlef,N.N.,Reciprocal theorems in theory of vibration and sound,Physical Dictionary,1(1936),458.(in Russian).
    [14]
    GraM,D.,Über der reziprozitatsatz in der dynamik der elastischen korper,Ing.Arch.,22(1954),45-46.
    [15]
    胡海昌,弹性体动力学中的倒易定理及它的一些应用,力学学报,1(1)(1957),63-76.
    [16]
    Lamb,H.,On reciprocal theorems in dynamics,London Math.Soc.Proc.,19(1888),144-151.
    [17]
    Toupin,R.A.,A variational principle for the mesh-type analysis of a mechanical system,J.A.M.,19,2(1952),151-152.
    [18]
    Crandall.S.H.,Complementary extremum principles for dynamics,Ninth Int.Con.Appl.Mech.,5(1957),80-87.
    [19]
    Green,A.E.and W.Zerna,Theoretical Elasticity,Oxford University Press,London(1954).
    [20]
    Chen Yu,Remarks on variational principles in elastodynamics,J.Fran.Inst.,278,1(1964).
    [21]
    Truesdell,C.and R.A.Toupin,The classical field theories,Encyclopedia of Physics,S.Flugge,Ed.,3,1(1960).
    [22]
    Yu Yi-yuan,Generalized Hamilton's principles and variational equation of motion in nonlinear elasticity theory with application to plate theory,J.A.S.A.,36,1(1964),111.
    [23]
    Barr,A.D.S.,An extension of the Hu-Washizu variational principle in linear elasticity for dynamic problems,J.Appl.Mech.,33(1966),465.
    [24]
    Dean,T.S.,and H.J.Plass,A dynamic variational principle for elastic bodies and its application to approximations in vibration problems,Devel.in Mech.,3,2(1965),167.
    [25]
    邢京堂,弹性动力学的变分原理与模态合法的理论研究,硕士论文,清华大学工程力学系,北京(1981).
    [26]
    邢京堂、关环兆昌,基于弹性动力学变分原理的模态综合法研究.固体力学学报,(2)(1983),248-257.
    [27]
    Xing Jing-tang and Zheng Chao-chang,Some general theorems and generalized and piece-generalized variational principles for elastodynamics,Reported at the Invitational China-American Workshop on Finite Element Method,Chengde,China(1986).
    [28]
    邢京堂,流固藕合振动分析的有限元与子结构-子区域方法的理论及数值计算研究-弹性动力学与微极线弹性动力学的变分原理及其在振动分析中的应用,博士论文,清华大学工程力学系,北京(1984).
    [29]
    邢京堂、郑兆昌,应用广义哈氏原理重看NeWmark与其它时间递推公式,上海力学,6(1)(1985),19-2 8.
    [30]
    Xing Jing-tang,Finite element-substructure method for dynamic analysis of coupled fluid-solid interaction problems,Proc.ojlnt.Conf.on Comp.Mech.,At.ri S N,Yagawa G,Ed.Springer-Verlag,Tokyo,(1986),IXIX117-IX122.
    [31]
    Xing Jing-tang,Du Qing-hua and Zheng Chao-chang,The displacement finite element formulation of dynamic analysis of fluid-structure interaction problems and substructure-subdomain techniques,Proc.of Int.Conf.on Vib.Probs,in Engng.,Du Qinghua,Ed.Xi'an Jiaotong University Press,Xi'an,453-457.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2431) PDF downloads(515) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return