Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.
Citation:
Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.
Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.
Citation:
Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.
The fundamental theory presented in part(I)[8] is used to analyze anisotropic plane stress problems.First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix;then we solve eigen problem;finally,we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress porblems on rectangular area.
Arnold,V.I.,Mathematical Methods of Classical Mechanics,Springer-Verlag.New York Inc.(1978).
[4]
列赫尼茨基,c,г.,《各向异性板》胡海昌译,科学出版社,北京(1963).
[5]
徐芝伦,《弹性力学》人民教育出版社,北京(1979).
[6]
秦孟兆,辛几何及计算哈密顿力学,力学与实践,12(6)(1990).
[7]
Zhong,Wan-xie and Zhong Xiang-xiang,Computational structural mechanics,optimal control and semi-analytical method for PDE,Computer and Structures,37,6(1990).