Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.
Citation: Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.

Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem

  • Received Date: 1991-08-02
  • Publish Date: 1992-12-15
  • The fundamental theory presented in part(I)[8] is used to analyze anisotropic plane stress problems.First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix;then we solve eigen problem;finally,we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress porblems on rectangular area.
  • loading
  • [1]
    钟万勰,分离变量法与哈密尔顿体系,计算结构力学及其应用,8(3)(1991).
    [2]
    钟万勰,条形域平面弹性问题与哈密尔顿体系,大连理工大学学步良,31(4)(1991).
    [3]
    Arnold,V.I.,Mathematical Methods of Classical Mechanics,Springer-Verlag.New York Inc.(1978).
    [4]
    列赫尼茨基,c,г.,《各向异性板》胡海昌译,科学出版社,北京(1963).
    [5]
    徐芝伦,《弹性力学》人民教育出版社,北京(1979).
    [6]
    秦孟兆,辛几何及计算哈密顿力学,力学与实践,12(6)(1990).
    [7]
    Zhong,Wan-xie and Zhong Xiang-xiang,Computational structural mechanics,optimal control and semi-analytical method for PDE,Computer and Structures,37,6(1990).
    [8]
    钟万勰、欧阳华江,复合材料力学的Hamilton体系和辛几何方法(Ⅰ)——一般原理,应用数学和力学.13(11)(1992).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2510) PDF downloads(635) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return