Citation: | XIONG Yuan-bo, LONG Shu-yao. Local Petrov-Galerkin Method for a Thin Plate[J]. Applied Mathematics and Mechanics, 2004, 25(2): 189-196. |
[1] |
Atluri S N,Zhu T.A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics[J].Comput Mech,1998,22(1):117—127. doi: 10.1007/s004660050346
|
[2] |
Atluri S N,Cho J Y,Kim H G.Analysis of thin beams,using the meshless local Petrov-Galerkin method,with generalized moving least squares interpolation[J].Comput Mech,1999,24(4):334—347. doi: 10.1007/s004660050456
|
[3] |
Atluri S N,Kim H G,Cho J Y.A critical assessment of the truly meshless local Pettrov-Galerkin(MLPG),and local boundary integral equation(LBIE) methods[J].Comput Mech,1999,24(2):348—372. doi: 10.1007/s004660050457
|
[4] |
Atluri S N,Zhu T.New concepts in meshless methods[J].International Journal for Numerical Methods in Engineering,2000,47(3):537—556. doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<537::AID-NME783>3.0.CO;2-E
|
[5] |
Belytschko T,Lu Y Y,Gu L.Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37(2):229—256. doi: 10.1002/nme.1620370205
|
[6] |
龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508—518.
|
[7] |
Costa J A.The boundary element method applied to plate problems[D].Southampton,UK:Southampton University,1986.
|
[8] |
Timoshenko S,Woinowsky-Krieger S.Theory of Plates and Shells[M].2nd ed.New York:McGraw-Hill,1959.
|
[1] | HU Yuda, LIU Chao. Double Resonance of Magnetism-Solid Coupling of in-Plane Moving Thin Plates With Linear Loads and Elastic Supports[J]. Applied Mathematics and Mechanics, 2021, 42(7): 713-722. doi: 10.21656/1000-0887.410202 |
[2] | LI Ruoyu, WANG Tianhong. Thermo-Mechanical Buckling Analysis of Thin Plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308 |
[3] | ZHAO Gang, LI Gang. A Least-Squares Fitting Method for Generalized Pareto Distributions Based on Quantiles[J]. Applied Mathematics and Mechanics, 2018, 39(4): 415-423. doi: 10.21656/1000-0887.380196 |
[4] | WANG Qing-qing, LI Xiao-lin. Error Analysis of the Scaled Moving Least Squares Approximation[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1289-1299. doi: 10.21656/1000-0887.370260 |
[5] | SUN Xin-zhi, LI Xiao-lin. Error Estimates for the Complex Variable Moving Least Square Approximation in Sobolev Spaces[J]. Applied Mathematics and Mechanics, 2016, 37(4): 416-425. doi: 10.3879/j.issn.1000-0887.2016.04.009 |
[6] | BAO Si-yuan, DENG Zi-chen. High-Precision Approximate Analytical Solutions for Free Bending Vibrations of Thin Plates and an Improvement[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1169-1180. doi: 10.21656/1000-0887.370005 |
[7] | NI Xiao-qin, CHENG Geng-dong. Optimal Design of Thin Solid Elastic Plates Under Thermal Load[J]. Applied Mathematics and Mechanics, 2015, 36(3): 233-241. doi: 10.3879/j.issn.1000-0887.2015.03.001 |
[8] | SHEN Hai-long, SHAO Xin-hui, ZHANG Tie. Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems[J]. Applied Mathematics and Mechanics, 2012, 33(3): 357-365. doi: 10.3879/j.issn.1000-0887.2012.03.009 |
[9] | GUO Zhi-wei, BAI Guang-chen. Classification Using Least Squares Support Vector Machine for Reliability Analysis[J]. Applied Mathematics and Mechanics, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005 |
[10] | FU Dong-jie, CHEN Hai-bo, ZHANG Pei-qiang. Improved Non-Singular Local Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2007, 28(8): 976-982. |
[11] | GAO Suo-wen, WANG Yue-sheng. ZHANG Zi-mao, MA Xing-rui, . Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1417-1424. |
[12] | LONG Shu-yao, XIONG Yuan-bo. Research on the Companion Solution for a Thin Plate in the Meshless Local Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2004, 25(4): 379-384. |
[13] | Gu Haiming, Yang Danping, Sui Shulin, Liu Xinmin. Least-Squares Mixed Finite Element Method for a Class of Stokes Equation[J]. Applied Mathematics and Mechanics, 2000, 21(5): 501-510. |
[14] | Zhang Xinong, Zhang Jinghui. The Hybrid Control of Vibration of Thin Plate with Active Constrained Damping Layer[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1035-1048. |
[15] | Zhou Zhulin. Ultimate Strength of Postbuckling for Simply Supported Rectangular Composite Thin Plates under Compression[J]. Applied Mathematics and Mechanics, 1998, 19(4): 365-371. |
[16] | Peng Jianshe, Zhang Jingyu, Yang Jie. Formulation of a Semi-Analytical Approach Based on Gurtin Variational Principle for Dynamic Response of General Thin Plates[J]. Applied Mathematics and Mechanics, 1997, 18(11): 987-991. |
[17] | Xu Mingtian, Cheng Delin. Solving Vibration Problem of Thin Plates Using Integral Equation Method[J]. Applied Mathematics and Mechanics, 1996, 17(7): 655-660. |
[18] | Yu Zhong-zhi. Generaliaed Biharmonic Operator and Its Application to the Bending of Elastic Thin Plates[J]. Applied Mathematics and Mechanics, 1994, 15(2): 159-165. |
[19] | Ji Zhen-yi, Yeh Kai-yuan. Incompatible Curved Quadrilateral Plate Bending Element with 12 Degrees of Freedom[J]. Applied Mathematics and Mechanics, 1993, 14(2): 101-107. |
[20] | Yeh Kai-yuan, Ji Zhen-yi. Exact Finite Element Method[J]. Applied Mathematics and Mechanics, 1990, 11(11): 937-946. |