Qian Ren-gen, Shouetsu Itou. DynamicStress Intensity Factors around Two Cracks near an Interface of Two Dissimilar EIastic Half-PIanes under In-plane Shear Impact Load[J]. Applied Mathematics and Mechanics, 1995, 16(1): 61-72.
Citation:
Qian Ren-gen, Shouetsu Itou. DynamicStress Intensity Factors around Two Cracks near an Interface of Two Dissimilar EIastic Half-PIanes under In-plane Shear Impact Load[J]. Applied Mathematics and Mechanics, 1995, 16(1): 61-72.
Qian Ren-gen, Shouetsu Itou. DynamicStress Intensity Factors around Two Cracks near an Interface of Two Dissimilar EIastic Half-PIanes under In-plane Shear Impact Load[J]. Applied Mathematics and Mechanics, 1995, 16(1): 61-72.
Citation:
Qian Ren-gen, Shouetsu Itou. DynamicStress Intensity Factors around Two Cracks near an Interface of Two Dissimilar EIastic Half-PIanes under In-plane Shear Impact Load[J]. Applied Mathematics and Mechanics, 1995, 16(1): 61-72.
Transient stresses around two collinear cracks which lie in parallel with the interface of the two dissimilar half-planes are studied in this article.The surfaces of the cracks are sheared suddenly.Application of the Fourier and Laplace transforms technique reduces the problem to that of solving dual integrai equations.To solvethese,the differences of the crack surface displacements are expanded in a series of functions which are automatically zero outside of the cracks.The unknown coefficients accompanied in the series are determined by the Schmidt method.The stress intensity factors are defined in the Laplace transform domain and these are inverted numerically in the physical space.As an example,the dynamic stress intensity factors around two cracks in a ceramic and steel bonded composite are numerically.