Chen Yuming, Xiao Heng. The Expliclt solution of the Matrix Equation AX-XB=C──To the memory of Prof[J]. Applied Mathematics and Mechanics, 1995, 16(12): 1051-1059.
Citation: Chen Yuming, Xiao Heng. The Expliclt solution of the Matrix Equation AX-XB=C──To the memory of Prof[J]. Applied Mathematics and Mechanics, 1995, 16(12): 1051-1059.

The Expliclt solution of the Matrix Equation AX-XB=C──To the memory of Prof

  • Received Date: 1995-02-28
  • Publish Date: 1995-12-15
  • Almost all of the existing results on the explicit solutions of the matrix equation AX-XB=C are obtained under the condition that A and B have no eigenvalues incommon For both symmetric or skewsymmetric matrices A and B.we shall give outthe explicit general solutions of this equation by using the notions of eigenprojections The results we obtained are applicable not only to any cases of eigenvalues regardlessof their multiplicities but also to the discussion of the general case of this equation.
  • loading
  • [1]
    W.E.Roth,The equation AX-YH=C and AX-XB=C in matrices.Proc.Amer.Math.Soc.,97(1952),392-396.
    [2]
    S.Barnett and C.Storey,Soma applications of Liapunov matrix equations,J.Inst.Math.Appl.,4,1(1968).33-42.
    [3]
    A.Iameson,Solution of the equation AX+XB=C by inversion of an M×M or N×N matrix,SIAM J.Appl.Math.,16(1968).1020-1023.
    [4]
    P.Lancaster,Explicit solution of Imear matrix equations,SIAM Rev.,12(1970).544-566.
    [5]
    D.H.Carlson and B.N.Datta.The Liapunov matrix equaiton SA+A*S=S*B*BS Linear Algebra Appl.,28(1979).43-53.
    [6]
    Eurice de Souza and S.P.Bhattacharyya.Controllability.observability and the solution of AX-XB=C.Linear Algebra Appl.,39(1981).167-188.
    [7]
    T.E.Djaferis and S.K.Mitter.Algebraic methods for the study of some linear matrix equations.Linear Algebra Appl.,44(1982).125-142.
    [8]
    J.K.John Jones and C.Lew.Solutions of Liapunov matrix equation BX-XA=C.IEEE Trans.Automatic AC-27(1982)464-466.
    [9]
    高维新.矩阵方程AX-XB-C的连分式解法.中国科学.A辑.(5)(1988).576-584
    [10]
    H.K.Wimmer,Linear matrix equaiton:the module theoretic approach,Lemear Algebia Appl.,120(1989).149-164.
    [11]
    Ma Er-chieh,A finite series solution of the matrix equation.AX-XB=C.SIAM J.Appl.,Math.,14(1966).490-495.
    [12]
    B.N.Dana and h.Dana.The matrix equation XA=ATX and an assocrated algonthm for solving the inertia and stability problems.Lmear Algebra Appl.,97(1987).103-119.
    [13]
    Guo Zhongheng,T.H.Lehman,Liang Haoyun and C-S.Man Twirl tensors and the tensor equation AX-XA=C.J.Elascity.27.2(1992).227-245.
    [14]
    C.D.Luehr and M.B.Ruhm,The synificance of projector operators in the spectral representation of symmetric second order tensors,Comput.Methods.Appl.Mech.Engre.84(1990).243-246.
    [15]
    Guo Zhongheng,Li Jianbo Xiao Heng and Chen Yuming,Intrinsic solution to the n-dimensional tensor equation Σr-1mUm-r×Ur-1=C.Comput.Methods Appl.Mech.Engrg.115(1994).359-364.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4850) PDF downloads(813) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return