Citation: | Xie Jianhua. Codimension Two Bifurcations and Hopf Bifurcations of an Impacting Vibrating System[J]. Applied Mathematics and Mechanics, 1996, 17(1): 63-73. |
[1] |
S. W. Shaw and P. L. Holmes, A periodically forced piece-wise linear oscillator, Journal of Sound and Vibration, 90,1 (1983), 129-155.
|
[2] |
P. C. Tung and S. W. Shaw, The dynamics of an impact print hammer, Journal of Vibration, Acoustics, Stress and Reliability in Design, 110, 4(i988), 193-199.
|
[3] |
J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, New York:Springer-Verlag(1983),102-116.
|
[4] |
Shu Zhdngzhou, Motion types and chaos of multi-body systems vibrating with impacts, Acta Mechanica Sinica, 7. 4 (1991). 369-375.
|
[5] |
H. Ishihana, Y. Takagi and S. Maezawa, Analysis of impact vibration to deltafunction method-care of one degree-of-freedom system, first report: prefectly elastic collision, 20th Japan Nat. Congress for Applied Mechanics, Tokyo (1970).
|
[6] |
谢建华.冲击式振动落砂机分叉问题研究,全国第三届运动稳定性与振动学术会议论文集:K运动稳定性、振动、分叉与混沌的研究》,中国科学技术出版社,北京(1992).
|
[7] |
O. E. Lanford, Bifurcation of periodic solution into invariant tori: The work of Ruelle and Takens, Lecture Notes in Math., 322, Berlin-Heidelberg, New York, Springer-Verlag (1973).
|
[8] |
Y. H. Wan, Computation of the stabity condition for the Hopf bifurcation of diffeomorphisms on R2, SIAM, J. Appl. Math., 34, 1 (1978).
|