Xu Xing, Ling Daosheng, Ding Haojiang, Du Qinghua. An h-Type Adaptive Finite Element[J]. Applied Mathematics and Mechanics, 1996, 17(6): 483-489.
Citation: Xu Xing, Ling Daosheng, Ding Haojiang, Du Qinghua. An h-Type Adaptive Finite Element[J]. Applied Mathematics and Mechanics, 1996, 17(6): 483-489.

An h-Type Adaptive Finite Element

  • Received Date: 1994-11-25
  • Rev Recd Date: 1996-01-11
  • Publish Date: 1996-06-15
  • For h-lype adaptive finite element method, the local mesh refinement introduces irregular nodes and destroys the standard continuity between elements. The reference nodes of the irregular are used to interpolate element coordinates and displacements.The improved shape functions, of which the conventional shape functions. are a particular case, are presented to guarantee the continuity, No changes but the shape functions are needed when the mcthod is applied in finite element programs.the computational results the features of the method higher accuracy,simplicity.fewer degrees of freedom and less computation effort.
  • loading
  • [1]
    A. K.Noor and S, N, Atluri, Advances and trends in computational structural mechanics, AIAA Tournal, 25 (1987), 977-995,
    [2]
    L, Demkowicz,J. T.Oden, W, Rachowicz and O, Hardy, Toward a universal h-p adaptive finite element strategy, Part 1; Constrained approximation and data structure, Comput, Method Appl, Mech., Engag,77(1989), 79-112,
    [3]
    J. T, Oden,L, Demkpwicz, W, Rachowica and T, A, Westermann,Toward a universal h-p adaptive finite element strategy,Part 2; A posteriors error estimation,Comput, Methods Appl.Engng,77 (1989), 113-180,
    [4]
    D, W, Kelly, J.P, DE S, R., Gago and O, C, Zienkiewicz, A posteriors error znalysis and adaptive processes in the finite element method, Part j:Error analysis, Int. J.Num, Meth, Engng,19 (1983), 1593-1619,
    [5]
    J.P, DE S, R.Gago, D, W, Kelly and O, C.Zienkiewicz, A posteriors error analysis and adaptive processes in the finite element omethod, Part j:Adaptive mesh refinement,Int, J.Num, Meth, Engng,19 (1983),1621-1858.
    [6]
    R.E, Bank and A, Werser,Some a posteriors error estimators for elliptic partial differential equations, Moth, Comput,44 (1985),283-301.
    [7]
    I.Babuska and A. Miller.A feedback finite element method with a posteriori error estimation.Part Ⅰ:The finite element method and some basic properties of the a posteriors error estimator, Comput. Methods Appl.Mech, Engng.,61(1987),1-40
    [8]
    W.C.Rheinboldt and CH, K, Mesztenyi, On a data structxre for adaptive finite element mesh refinement.ACM Trans.,Math. Software, 6 (1980), 166-187
    [9]
    L, Demkowicz and J, T, Oden,A review of local mesh refinement techniques and corresponding data structures in h-type adaptive finite element methods,TICOM Rept, 88-02, the Texas Institute for Computational Mechanics, the University of Teas at Austin, Texas 78-12(1983).
    [10]
    范天佑,《断裂力学基础》,江苏科学技术出版社(1978),
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2105) PDF downloads(453) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return