Citation: | Zheng Quanshui. Quasi-Principal Axis Method in Finite Deformation[J]. Applied Mathematics and Mechanics, 1996, 17(10): 857-868. |
[1] |
R.Hill,Aspects of invariance in solid mechanics,in Advances in Applied Mechanics,Vol.18 (Chia-Shun Yih,ed.),Academic Press,New York(1978),1-75.
|
[2] |
R.Hill,Constitutive inequalities for isotropic elastic solids under finite strain,Proc.R.Soc.Lond.A314 (1970),457-472.
|
[3] |
M.A.Biot,Mechanics of Incremental Deformation,John Wiley & Sons (1965).
|
[4] |
郭仲衡、R,N,Dubey,非线性连续介质力学中的"主轴法",力学进展,13 (1983),1-17.
|
[5] |
郭仲衡、梁浩云,从主轴法到抽象表示,力学进展,20 (1990),303-315.
|
[6] |
梁浩云,主轴内蕴法与高维张量方程AX-XA=C,应用数学和力学,17(10) (1996),889-894.
|
[7] |
郭仲衡,《非线性弹性理论》,科学出版社(1980).
|
[8] |
A.Hoger and D.E.Carlson,Determination of the stretch and rotation in the polar decomposition of the deformation gradient,Quarl.Appl.Math,42 (1984),113-117.
|
[9] |
Z.-H.Xiong and Q.-S.Zheng,General algorithms for the polar decomposition and strains,Acta Mech.Sinica,4(1988),175-181.
|
[10] |
Q.-S.Zheng,Theory of representations for tensor functions——A unified invariant approach to constitutive equations,Appl.Mech.Rer.,47 (1994),545-587.中译:张量函数为表示理论—术构方程统一不变性研究,力学进展,26(1) (1996),114-137和26(2) (1996).
|