Wu Jiancheng, Pan Lizhou. Nonlnear Theory of Multilayer Sandwich Shells and Its Application(Ⅰ)-General Theory[J]. Applied Mathematics and Mechanics, 1997, 18(1): 19-27.
Citation: Wu Jiancheng, Pan Lizhou. Nonlnear Theory of Multilayer Sandwich Shells and Its Application(Ⅰ)-General Theory[J]. Applied Mathematics and Mechanics, 1997, 18(1): 19-27.

Nonlnear Theory of Multilayer Sandwich Shells and Its Application(Ⅰ)-General Theory

  • Received Date: 1995-08-01
  • Publish Date: 1997-01-15
  • In this paper, a nonlinear theory is given for multilayer sandwich shell sundergoing small strains and moderate rotations. Then a simplified theory for the shells undergoing moderate or moderate/small rotations are obtained.
  • loading
  • [1]
    B. D. Liaw and R. W. Little, Theory of bending multilayer sandwich plates, AIAAJournal, 5 (1967), 301-304.
    [2]
    J. P. Wong and A. E. Salama, Elastic stability of multilayer sandwich plates,Developments in Mechanics, 4 (1968), 289-304.
    [3]
    J. J. Azar, Bending theory of multilayer orthotropic sandwich plates. AIAA Journal, 6(1968), 2166-2169.
    [4]
    F. Abdulhadi. Vibration of multicore orthotropic sandwich plates, ASME paper 71-vibr-48, Toronto, Ontario, Canada (1971).
    [5]
    J. J. Azar, Elastic constants for multilayered sandwich cylinders shells, AIAA Journal, 8(1970), 157-158.v[6] B. D. Liaw. A bending theory for multilayer anisotropic conical shells, AeronauticalQuarrterly, 20 (1969), 61-74.
    [6]
    S. V. Rajagopal et al., Large-deflection and nonlinear vibration of multilayered sandwichplates, AIAA Journal, 25 (1978), 130-133.
    [7]
    W. Z. Chien. The intrinsic theory of thin shells and plates, Part III, Application to thinshells, Quart. Appl. Math., 2 (1944), 120-135.
    [8]
    W. Pietraszkiewiez, Lagrangian description and incremental formulation in the non-lineartheory of thin shells, Int. J. Nonlinear Mech., 19 (1985), 115-139.
    [9]
    刘人怀、朱金福.《夹层壳非线性理论》,机械工业出版社(1993).
    [10]
    F. John, Estimates for the derivatives of the stresses in a thin shell and interior shellequations, Comm Pure and Appl. Math., 18 (1965), 235-267.
    [11]
    W. T. Koiter. The intrinsic equations of shell theory with some applications, Mech.Today, 5 (1980), 139-154.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2204) PDF downloads(499) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return