Citation: | Chen Mengcheng, Tang Renji. An Approximate Method of Response Analysis of Vibrations for Cracked Beams[J]. Applied Mathematics and Mechanics, 1997, 18(3): 203-209. |
[1] |
I. G. Chondros and A. D. Dimarogonas, Identification of cracks in welded joints ofcomplex structures, J. Sound & Vib., 69 (1980), 531~538.
|
[2] |
沈亚鹏、唐照千,裂纹对悬臂板频普的影响,固体力学学报,3 (1982), 247-251
|
[3] |
P. F. Rizos, N. Aspragathos and A. D. Dimarogonas, Identification of crack locationand magnitude in a cantilever beam from the vibration mode, J. Sound & Vib., 138(190), 381~388.
|
[4] |
G. E. Nash, Bending deflections and moments in notched beam, Engng. Fract. Mech., 3(1971), 139~150.
|
[5] |
P. Gudmundson, Eigenfrequency changes of structures due to cracks, notches or othergeometrical changes, J. Mech. Phys. Solids, 30 (1982), 339~353.
|
[6] |
J. R. Rice and N. Levy, The part-through surface crack in an elastic plate, J. Appl.Mech., 39 (1972), 185~194.
|
[7] |
H. Tada, P. C. Paris and G. R. Irwin, The Stress Analysis of Crack Handbook, DelResearch Corp., Hellerton. PA (1973).
|
[8] |
T. M. Tharp, A finite element for edge-crack beam columns, Int. J. Numer. MethodsEngng 24 (1987), 1941~1950.
|