Zheng Jibing, Gao Hangshan, Guo Yinchao, Meng Guang. Application of Wavelet Transform to Bifurcation and Chaos Study[J]. Applied Mathematics and Mechanics, 1998, 19(6): 556-563.
Citation: Zheng Jibing, Gao Hangshan, Guo Yinchao, Meng Guang. Application of Wavelet Transform to Bifurcation and Chaos Study[J]. Applied Mathematics and Mechanics, 1998, 19(6): 556-563.

Application of Wavelet Transform to Bifurcation and Chaos Study

  • Received Date: 1996-10-28
  • Rev Recd Date: 1997-12-29
  • Publish Date: 1998-06-15
  • The response of a nonlinear vibration system may be of three types, namely,periodic, quasiperiodic or chaotic. when foe parameters of foe system are changed. The periodic motions can be identified by Poincarb map, and harmonic wavelet transform(HAT) can distinguish quasiperiod from chaos, so the existing domains of differenttypes of motions of the system can be revealed in the parametric space with themethod of HWT joining with Poincare map.
  • loading
  • [1]
    D.E.Newland,Wavelet analysis of vibration,Part:Theory,ASME,J.Vibration and Acoustics,116(3)(1994),409-416.
    [2]
    D.E.Newland,Ran dom Vibrations,Spectral and Wavelet Analysis,3rd Edition,Longman,Har-low and John Wiley,New York(1993),295-374.
    [3]
    C.K.Chui,An Introduction to Wavelets,Academic Press,San Diego(1992),49-74.
    [4]
    郑吉兵,裂纹转子的稳定性、分叉及混沌,西北工业大学博士学位论文(1996),29-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2216) PDF downloads(751) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return