Yu Xuegang. Hyperbolic Lagrangian Functions[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.
Citation:
Yu Xuegang. Hyperbolic Lagrangian Functions[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.
Yu Xuegang. Hyperbolic Lagrangian Functions[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.
Citation:
Yu Xuegang. Hyperbolic Lagrangian Functions[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.
Hyperbolic Lagrangian Functions
Received Date: 1996-09-15
Rev Recd Date:
1997-06-05
Publish Date:
1998-12-15
Abstract
Hyperbolic complex numbers correspond with Minkowski geometry.The hyperbolic Lagrangian equation and the Hamilton-Jacobi equation will be derived from the invariants of four-dimensional space-time intervals and hyperbolic Lorente transformations.
References
[1]
熊锡金,泛复变函数,武汉大学学报,(1)(1980),26-29.
[2]
于学刚、崔景贸,双曲量子力学,松辽学刊,(4)(1995),1-6.
[3]
于学刚、马龙军,双曲型复泛函分析概论,通化师院学报,(4)(1993),30-34.
[4]
于学刚、于学钎,双曲复函与相对论,数学物理学报,15(4)(1995),435-441.
[5]
于学刚、高俊丽,双曲张量分析,5第二届国际非线性力学会议论文集6,北京大学出版社(1993),883-884.
Proportional views