Yu Xuegang. Hyperbolic Lagrangian Functions[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.
Citation: Yu Xuegang. Hyperbolic Lagrangian Functions[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.

Hyperbolic Lagrangian Functions

  • Received Date: 1996-09-15
  • Rev Recd Date: 1997-06-05
  • Publish Date: 1998-12-15
  • Hyperbolic complex numbers correspond with Minkowski geometry.The hyperbolic Lagrangian equation and the Hamilton-Jacobi equation will be derived from the invariants of four-dimensional space-time intervals and hyperbolic Lorente transformations.
  • loading
  • [1]
    熊锡金,泛复变函数,武汉大学学报,(1)(1980),26-29.
    [2]
    于学刚、崔景贸,双曲量子力学,松辽学刊,(4)(1995),1-6.
    [3]
    于学刚、马龙军,双曲型复泛函分析概论,通化师院学报,(4)(1993),30-34.
    [4]
    于学刚、于学钎,双曲复函与相对论,数学物理学报,15(4)(1995),435-441.
    [5]
    于学刚、高俊丽,双曲张量分析,5第二届国际非线性力学会议论文集6,北京大学出版社(1993),883-884.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2813) PDF downloads(955) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return