[1] | ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, SHI Yueqing, GUO Chengjie, LI Rui. Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279 |
[2] | HAN Shaoyan, GAO Ruxin. A Wave Finite Element Method for Free Vibration Analysis of Lattice Core Sandwich Cylindrical Shells[J]. Applied Mathematics and Mechanics, 2024, 45(1): 25-33. doi: 10.21656/1000-0887.440130 |
[3] | LI Yihao, XU Dian, CHEN Yiming, AN Dongqi, LI Rui. Finite Integral Transform Solutions for Free Vibrations of Rectangular Thin Plates With Mixed Boundary Constraints[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1112-1121. doi: 10.21656/1000-0887.440051 |
[4] | LI Qing, CHEN Shenshen. Free Vibration Analysis of Laminated Composite Plates Based on the Reconstructed Edge-Based Smoothing DSG Method[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1123-1132. doi: 10.21656/1000-0887.430109 |
[5] | BAO Siyuan, ZHOU Jing, LU Jianwei. Free Vibration of MultiSegment Beams With Arbitrary Boundary Conditions[J]. Applied Mathematics and Mechanics, 2020, 41(9): 985-993. doi: 10.21656/1000-0887.410045 |
[6] | WANG Yongfu, QI Wenkai, SHEN Cheng. Free Vibration Analysis of Rectangular Honeycomb-Cored Plates Under Elastically Constrained Boundary Conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348 |
[7] | ZHONG Hao, XIANG Tianyu. A Transfer Matrix Algorithm for Vertical Free Vibration of Suspension Bridges[J]. Applied Mathematics and Mechanics, 2019, 40(9): 991-999. doi: 10.21656/1000-0887.390221 |
[8] | BAO Si-yuan, DENG Zi-chen. High-Precision Approximate Analytical Solutions for Free Bending Vibrations of Thin Plates and an Improvement[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1169-1180. doi: 10.21656/1000-0887.370005 |
[9] | LI Wen-da, DU Jing-tao, YANG Tie-jun, LIU Zhi-gang. Traveling Wave Mode Characteristics of Rotating Functional Gradient Material Cylindrical Shell Structures With Elastic Boundary Constraints[J]. Applied Mathematics and Mechanics, 2015, 36(7): 710-724. doi: 10.3879/j.issn.1000-0887.2015.07.004 |
[10] | Lazreg Hadji, Hassen Ait Atmane, Abdelouahed Tounsi, Ismail Mechab, Noureddine Ziane, El Abbas Adda Bedia. Free Vibration of Functionally Graded Sandwich Plates Using Four Variable Refined Plate Theory[J]. Applied Mathematics and Mechanics, 2011, 32(7): 866-882. doi: 10.3879/j.issn.1000-0887.2011.07.010 |
[11] | LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation[J]. Applied Mathematics and Mechanics, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001 |
[12] | CAO Xiong-tao, ZHANG Zhi-yi, HUA Hong-xing. Free Vibration of Circular Cylindrical Shell With Constrained Layer Damping[J]. Applied Mathematics and Mechanics, 2011, 32(4): 470-482. doi: 10.3879/j.issn.1000-0887.2011.04.009 |
[13] | LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Simply-Supported Trapezoidal Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2010, 31(5): 602-608. doi: 10.3879/j.issn.1000-0887.2010.05.011 |
[14] | LI Shi-rong, SU Hou-de, CHENG Chang-jun. Free Vibration of Functionally Graded Material Beams With Surface-Bonded Piezoelectric Layers in Thermal Environment[J]. Applied Mathematics and Mechanics, 2009, 30(8): 907-918. doi: 10.3879/j.issn.1000-0887.2009.08.003 |
[15] | WANG Yun, XU Rong-qiao, DING Hao-jiang. Free Axisymmetric Vibration of FGM Circular Plates[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1009-1014. doi: 10.3879/j.issn.1000-0887.2009.09.001 |
[16] | HUANG Yan, LEI Yong-jun, SHEN Hui-jun. Free Vibration of Anisotropic Rectangular Plates by General Analytical Method[J]. Applied Mathematics and Mechanics, 2006, 27(4): 411-416. |
[17] | SHANG Xin-chun. An Exact Analysis for Free Vibration of a Composite Shell Structure-Hermetic Capsule[J]. Applied Mathematics and Mechanics, 2001, 22(9): 934-942. |
[18] | Zhang Yingshi. Vibrations of Stepped One-Way Thin Rectangular Plates Subjected to in-Plane Tensile/Compressive Force in y-Direction on Winkler’s Foundation[J]. Applied Mathematics and Mechanics, 2000, 21(7): 708-714. |
[19] | Zhang Yingshi. Vibrations of Stepped Rectangular Thin Plates on Winkler’s Foundation[J]. Applied Mathematics and Mechanics, 1999, 20(5): 535-544. |
[20] | Zhang Yingshi, Wang Xieshan. Vibrations of One-Way Rectangular Stepped Thin Plates on Winkler’s Foundation[J]. Applied Mathematics and Mechanics, 1998, 19(2): 156-164. |