Feng Qi. Modeling of Stochastic Modulated Rattling System[J]. Applied Mathematics and Mechanics, 1999, 20(1): 85-92.
Citation: Feng Qi. Modeling of Stochastic Modulated Rattling System[J]. Applied Mathematics and Mechanics, 1999, 20(1): 85-92.

Modeling of Stochastic Modulated Rattling System

  • Received Date: 1997-04-25
  • Rev Recd Date: 1998-10-03
  • Publish Date: 1999-01-15
  • Rattling vibration is an important noise source of gear-box. To control that noise, it is necessary to elaborate a mathematics-mechanical model on rattling gears. In this paper, a rattling system modulated by noise was investigated. Instead of performing the very tedious numerical calculation, a discrete stochastic model described by three dimensional mean mapping was established by means of the Non-Gaussian closure technique. Through the example, the chaotic stochastic behavio may be revealed. In comparsion with deterministic model, the model developed in this paper is more approximate to practice and more availlable for acoustic investigation, so that it is suggested to be applied to modeling on rattling vibratio.
  • loading
  • [1]
    Kckay F.Dynamik der zahnradgetrieb[A].Modell,Verbahren Verhalten[M],Berlin-Heiderberg:springer Verlag,1987
    [2]
    Kckay F.Pfeibber F.Uber Rassel in kfz-schaltgetriebe[J].Ing-Archiv,1986,56(1):25~37
    [3]
    Pfelffer F.Mechanische System mit unstetigen bergang[J].Ing-Archiv,1984,54(3):232~240
    [4]
    Pfelffer F.On stdady dynamlcs in machines with plays[A].Proc 7th World Congress on the Theory of Machines and Mechanicsms[R],Sevilla,1987
    [5]
    Pfelffer F.Seltsama Attraktoren in Zahnradgetrieben[J].Ing-Archiv,1988,58(2):113~125
    [6]
    Kunert A.Dynamik spielbehafter Maschinenteie[Z].VDI-Bericht Nr:VDI VEklag,1992,175
    [7]
    Karaginnis K,Pfeiffer F.Theoretical and experimental investigations of gear rattling[J].Nonlinear Dynamics,1991,2(3):367~387
    [8]
    Kapitaniak T.Chaos on System with Noise[M].Singapore:World Scientific etc,1988
    [9]
    Ibrahim R A.Parametric random vibration[M].New York:John Wiley and Sons,INC,etc,1985
    [10]
    Crandall S H.Non-Gausslan closure techniques for stationary random vibration[J].Int J Non-Linear Mechanics,1985,20(1):1~8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2053) PDF downloads(674) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return