Bai Zhongzhi. Parallel Interval Matrix Multisplitting AOR Methods and Their Convergence[J]. Applied Mathematics and Mechanics, 1999, 20(2): 169-174.
Citation: Bai Zhongzhi. Parallel Interval Matrix Multisplitting AOR Methods and Their Convergence[J]. Applied Mathematics and Mechanics, 1999, 20(2): 169-174.

Parallel Interval Matrix Multisplitting AOR Methods and Their Convergence

  • Received Date: 1997-02-17
  • Publish Date: 1999-02-15
  • This paper proposes a class of parallel interval matrix multisplitting AOR methods for solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient matrices are interval H_matrices.
  • loading
  • [1]
    Frommer A, Mayer G. Paralled interval multisplitting[J]. Numer Math,1989,56:255~267
    [2]
    Wang D. On the convergence of the parallel multisplitting AOR algorithm[J]. Linear Algebra Appl,1991,154/156:473~486
    [3]
    Neumaier A. New techniques for the analysis of linear interval equations[J].Linear Algebra Appl,1984,58:273~325
    [4]
    Alefeld G, Herzberger J. Introduction to Interval Equations[M]. New York: Academic Press, 1983
    [5]
    Zhou R. The convergence of interval AOR method[J].Math Numer Sinica,1992,14(1):49~52
    [6]
    Varga R S. Matrix Iterative Analysis[M].Englewood Cliffs, N J:Prentice-Hall, INC,1962
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2716) PDF downloads(920) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return