Cui Ximin, Chen Zhida. The Application of Nonlinear Gauge Method to the Analysis of Local Finite Deformation in the Necking of Cylindrical Bar[J]. Applied Mathematics and Mechanics, 1999, 20(2): 111-118.
Citation: Cui Ximin, Chen Zhida. The Application of Nonlinear Gauge Method to the Analysis of Local Finite Deformation in the Necking of Cylindrical Bar[J]. Applied Mathematics and Mechanics, 1999, 20(2): 111-118.

The Application of Nonlinear Gauge Method to the Analysis of Local Finite Deformation in the Necking of Cylindrical Bar

  • Received Date: 1997-04-17
  • Rev Recd Date: 1998-07-08
  • Publish Date: 1999-02-15
  • Localized deformation and instability is the focal point of research in mechanics.The most typical problem is the plastic analysis of cylindrical bar necking and shear band under uniaxial tension. Traditional elasto-plastic mechanics of infinitesimal deformation can not solve this problem successfully.In this paper,on the basis of S(strain)-R(rotation)decomposition theorem,the authors obtain the local strain distribution and progressive state of axial symmetric finite deformation of cylindrical bar under uniaxial tension adopting nonlinear gauge approximate method and computer modelling technique.
  • loading
  • [1]
    Hill R. A general theory of uniqueness and stability in elastic-plastic solids [J].J Mech Phys Solids, 1958,6(3):236
    [2]
    Pietruszczak St, Mroz Z. Finite element analysis of deformation of strain softening material [J].Internat J Numer Methods Engrg, 1981,17(3):327
    [3]
    Tvergaard V, Needleman A, Lo K K. Flow localization in the plane strain tension test[J].J Mech Phys Solids, 1981,29(2):115
    [4]
    Aravas N, On the numerical integration of a class of pressure-dependent plasticity models[J].Internat J Numer Methods Engrg, 1987,24(7):1395
    [5]
    Ortiz M, Leroy Y, Needleman A, A finite element method for localized failure analysis[J].Comput Methods Appl Mech Engrg, 1987,61(2):189
    [6]
    Ramakrishnan N, Okada H, Atluri S N. On shear band formation:Ⅱ.Simulation using finite element method[J].Internat J Plas, 1994,10(5):521
    [7]
    Biot M A. Mechanics of Incremental Deformation[M]. New York: John Wiley & Sons Inc, 1965
    [8]
    陈至达.有理力学[M].徐州:中国矿业大学出版社,1988
    [9]
    尚勇,陈至达.论拖带坐标系中应力的客观速率[J].应用数学和力学,1988,10(2):95~104
    [10]
    Chen Z D, Liu X C. Nonlinear geommtric field theory and viscoplasticity of large deformation [A].In:N R Scottos ed. MD-Vol,96,Proc of the ASME Material Division[C]. Book No H1041A,1995,429~438
    [11]
    陈至达,杆板壳大变形理论[M].北京:科学出版社,1995
    [12]
    Wang C, Chen Z D. Microrotation effects in material fracture and damage [J].Eng Frac Mech, 1991,38(2-3):147
    [13]
    李书瑞,吴立新,吴国运.15MnHP钢拉伸变形过程的细观观察[A].第三届全国细观力学研讨会[C].杭州:浙江大学,1995,142
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2302) PDF downloads(660) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return