Liu Rongwan, Fu Jingli. Lie Symmetries and Conserved Quantities of Nonconservative Nonholonomic Systems in Phase Space[J]. Applied Mathematics and Mechanics, 1999, 20(6): 597-601.
Citation: Liu Rongwan, Fu Jingli. Lie Symmetries and Conserved Quantities of Nonconservative Nonholonomic Systems in Phase Space[J]. Applied Mathematics and Mechanics, 1999, 20(6): 597-601.

Lie Symmetries and Conserved Quantities of Nonconservative Nonholonomic Systems in Phase Space

  • Received Date: 1998-01-06
  • Rev Recd Date: 1999-01-30
  • Publish Date: 1999-06-15
  • The invariance and conserved quantities of the nonconservative nonholonomic systems are studied by introducing the infinitesimal transformations in phase space. The Lie's symmetrical determining equations are established. The Lie's symmetrical structure equation is obtained. An example to illustrate the application of the result is given.
  • loading
  • [1]
    Noether A E. Invariante variations probleme[J].Gttinger Nachrichten, Mathematisch-Physicalishe Klasse,1918,2:235~257.
    [2]
    梅风翔,刘端,罗勇.高等分析力学[M].北京:北京理工大学出版社,1991.
    [3]
    李子平,经典和量子约束系统及其对称性质[M].北京:北京工业大学出版社,1993.
    [4]
    Liu Duan. Noether's theorem and its inverse of nonholonomic nonconservative dynamical systems[J].Science in China (Series A),1990,34(4):419~429.
    [5]
    Lutzky M. Dynamical symmetries and conserved quantities[J].J Phy A, Math Gen,1979,12(7):973~981.
    [6]
    Bluman G W, Kumei S. Symmetries and Differential Equations[M].New York: Springer-Verlag,1989.
    [7]
    赵跃宇,非保守力学系统的Lie对称性和守恒量[J].力学学报,1994,26(3):380~384.
    [8]
    Santilli R M. Foundations of Theoretical Mechanics Ⅱ[M].New York: Springer-Verlag,1983.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2609) PDF downloads(710) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return