Xiong Junjiang, Wu Zhe, Gao Zhentong. γ-p-Sa-Sm-N Surface Theory and Two-Dimensional Reliability Miner Rule for Fatigue Reliability-Based Design[J]. Applied Mathematics and Mechanics, 1999, 20(7): 707-712.
Citation:
Xiong Junjiang, Wu Zhe, Gao Zhentong. γ-p-Sa -Sm -N Surface Theory and Two-Dimensional Reliability Miner Rule for Fatigue Reliability-Based Design[J]. Applied Mathematics and Mechanics, 1999, 20(7): 707-712.
Xiong Junjiang, Wu Zhe, Gao Zhentong. γ-p-Sa-Sm-N Surface Theory and Two-Dimensional Reliability Miner Rule for Fatigue Reliability-Based Design[J]. Applied Mathematics and Mechanics, 1999, 20(7): 707-712.
Citation:
Xiong Junjiang, Wu Zhe, Gao Zhentong. γ-p-Sa -Sm -N Surface Theory and Two-Dimensional Reliability Miner Rule for Fatigue Reliability-Based Design[J]. Applied Mathematics and Mechanics, 1999, 20(7): 707-712.
γ-p-Sa -Sm -N Surface Theory and Two-Dimensional Reliability Miner Rule for Fatigue Reliability-Based Design
Research Center of Solid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100083, P R China
Received Date: 1997-04-25
Rev Recd Date:
1999-03-08
Publish Date:
1999-07-15
Abstract
First of all,the concept of γ-p-Sa -Sm -N (confidence level-reliadility-stress amplitude-stress mean)surface is presented.Then the formulas of p-Sa -Sm -N surface and γ-p-Sa -Sm -N surface are derived.In addition,fatigue strength distribution function and two-dimensional reliability Miner rule are obtained.At last,a example is given.
References
[1]
高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986.
[2]
高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望[J].机械强度,1995,17(3):61~82.
[3]
熊峻江,高镇同.用于疲劳可靠性设计的p-Sa -Sm -N 曲面拟合法[J].实验力学,1995,10(1):63~67.
[4]
熊峻江,高镇同.极大似然法测定p-S-N曲线的置信度[J].北京航空航天大学学报,1995,17(6):687~691.
[5]
Gao Z T. The confidence level and determination of the minimum of specimens in fatigne testing[A]. Conference Proceedings of Fatigue84[C].London: The Chameleon Press,1984.
[6]
熊峻江,黄新宇,高镇同,等.极大似然法对比试验研及其试验数据处理[J].航空学报,1996:17(5):539~542.
[7]
内野和雄,中村义隆.疲劳デ—タの整理法[J].石川岛播磨技报,1974,14(77):39~44.
[8]
Weibull W. Fatigue Testing and Analysis of Results[M]. New York: Macmillan Company, 1961.
Proportional views