Jiang Chengshun, Gu Haiming. Qualitative Analysis for the Solution of Kuramoto-Sivashinsky Equation[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1161-1167.
Citation: Jiang Chengshun, Gu Haiming. Qualitative Analysis for the Solution of Kuramoto-Sivashinsky Equation[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1161-1167.

Qualitative Analysis for the Solution of Kuramoto-Sivashinsky Equation

  • Received Date: 1998-03-27
  • Rev Recd Date: 1999-06-18
  • Publish Date: 1999-11-15
  • In this paper, two kinds of initial boundary value problems for Kuramoto-Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions.
  • loading
  • [1]
    Temam R.Infinite-dimensional dynamical systems in mechanics and physics[A].Appl Math Sciences[M],Vol 68.New York:Springer,1988.
    [2]
    Kukavica Igor.On the behavior of solutions of the Kuramoto-Sivashinsky equation for negative time[J].J Math Anal Appl,1992,166(2):601~606.
    [3]
    Sell G R.Global attractors for the three-dimensional Navier-stokes equation[J].J of Dynamics and Differential Equation,1996,8(1):1~33.
    [4]
    Sell G R,You T.Dynamics of Evolutionary Equation[Z].Lecture Notes,1995.
    [5]
    Kwak M.Finite dimensional inertial forms for the 2D Navier-Stokes equation[J].Indian J Math,1992,41(3):927~981.
    [6]
    Cohen D S,Murray J D.A generalized diffusion model for growth and dispersal in population[J].J Math Biol,1981,12(2):237~249.
    [7]
    Liu B P,Pao C V.Integral representation of generalized diffusion model in popuation problems[J].J of Integral Eqs,1984,5(2):175~185.
    [8]
    Chen G W.Initial value problem for a class of nonlinear parabolic systems of fourth-order[J].Acta Math Scientia,1991,11(3):393~400.
    [9]
    Zhou Y L,Fu H Y.The nonlinear hyperbolic systems of higher order of generalized Sine-Gordon type,Acta Math,Sinica,1983,26(2):234~249.
    [10]
    康盛亮,桂子鹏.数学物理方程中的现代分析方法[M].上海:同济大学出版社,1991.
    [11]
    张石生.积分方程[M].重庆:重庆出版社,1988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2734) PDF downloads(819) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return