Chen Yufu, Zhang Hongqing. A Generalization of Recursion Operators of Differential Equations[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1143-1148.
Citation: Chen Yufu, Zhang Hongqing. A Generalization of Recursion Operators of Differential Equations[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1143-1148.

A Generalization of Recursion Operators of Differential Equations

  • Received Date: 1998-05-22
  • Rev Recd Date: 1999-05-22
  • Publish Date: 1999-11-15
  • Most important recursion operators of differential equations are integro-differential operators. One often runs into difficulties in trying to obtain a full hierarchy of symmetries. The lack of precision sometimes leads to bogus symmetries. In this paper, a generalization of recursion operators is given, which eliminates the problem. Several examples are also given to demonstrate the generalization and the significance of the generalization is shown simultaneously.
  • loading
  • [1]
    Ablowits M J,Kaup D J,Newell A C,et al.The inverse scaterse scattering transform——Fourier analysis for nonlinear problems[J].Stud Appl Math,1974,53(4):249~315.
    [2]
    Miura R M,Gardner C S,Kruskal M D.Korteweg-de Vries equation and generalizations Ⅰ,Ⅱ[J].J Math Phys,1968,9(8):1202~1209.
    [3]
    Magri F.A simple model of the integrable Hamiltonian equations[J].J Math Phys,1978,19(5):1156~1162.
    [4]
    Olver P J.Applications of Lie Groups to Differential Equations[M].New York:Springer-Verlag,1986.
    [5]
    Olver P J.Evolution equations possessing infinitely many symmetries[J].J Math Phys,1997,18(6):1212~1215.
    [6]
    Krasil'shchik I S,Vinogradov A M.Nonlocal treads in the geometry of differential equations,symmetries,conservation laws,and Backlund transformations[J].Acta Appl Math,1989,15(2):161~209.
    [7]
    Ayse Karasu,Jordan KdV systems and painleve property[J].Int J Theo Phys,1997,36(3):705~713.
    [8]
    Khor'kova N G.Conservation laws and nonlocal symmetries[J].Math Notes,1989,44(4):562~568.
    [9]
    Wahlquist H D,Estabrook F B.Prolongation structures of nonlinear evolution equations[J].J Math Phys,1975,16(1):1~7.
    [10]
    Dodd R K.The general prolongation formulae for nonlocal symmetries[J].Phys Lett,1994,A195:125~127.
    [11]
    Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989.
    [12]
    Krasil'shchik I S,Kersten P H M.Deformations and recursion operators for evolution equation[A].Geometry in Partial Differential Equations[C].World Scientific Publishing Co.1994,114~155.
    [13]
    张鸿庆.弹性力学方程组一般解的统一理论[J].大连理工大学学报,1978,17(3):23~27.
    [14]
    张鸿庆.力学的代数化、机械化、辛化与几何化[A].见:在第七届现代力学与数学会议(MMM-Ⅶ)上的报告[C],1997,20~25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2411) PDF downloads(689) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return