Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160.
Citation:
Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160.
Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160.
Citation:
Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160.
The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction
1.
LNM, Institute of Mechanics, Academia Sinica, Beijing 100080, P. R. China;
2.
Department of Mathematics, Shanghai University, Shanghai 201800, P. R. China;
3.
Department of Mathematics, Yunnan University, Kunming 650091, P. R. China
Received Date: 1997-01-20
Rev Recd Date:
1999-04-28
Publish Date:
2000-02-15
Abstract
For a n-dimensional vector fields preserving some n -form,the following conclusion is reached by the method of Lie group.That is,if it admits a one-parameter,n -form preserving symmetry group,a transformation independent of the vector field is constructed explicitly,which can reduce not only dimesion of the vector field by one,but also make the reduced vector field preserve the corresponding(n -1)-form.In particular,while n =3,an important result can be directly got which is given by Mezie and Wiggins in 1994.
References
[1]
Olver P J.Applications of Lie Group to Differential Equations[M].New York:Springer-Verlag,1986.
[2]
Sen T,Tabor M.Lie symmetries of the Lorenz model[J].Physica D,1990,44(3):313~339.
[3]
Smale S.Topology and mechanics[J].Inv Math,1970,10(2):305~331.
[4]
Meyer K R.Symmetries and integrals in mechanics[A].In:M M Peixoto Ed.Dynamical Systems[C].New York:Academic Press,1973,259~272.
[5]
Marsden J E,Weinstein A.Reduction of symplectic manifolds with symmetry[J].Rep Math Phys,1974,5(1):121~130.
[6]
李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用[M].北京:科学出版社,1994.
[7]
Mezie J,Wiggins S.On the integrability and perturbation of three-dimensional fluid flows with symmetry[J].J Nonlinear Science,1994,4(1):157~194.
[8]
Ottino J M.The Kinematics of Mixing:Stretching,Chaos and Transprot[M].Cambridge:Cambridge University Press,1989.
[9]
郭仲衡,陈玉明.具有不依赖于时间的不变量的三维常微分方程组的Hamilton结构[J].应用数学和力学,1995,16(4):283~288.
[10]
张景炎.三维梯度共轭系统的全周期性[J].中国科学A辑,1983,13(5):426~437.
[11]
Marsden J E,Ratiu T S.Introduction to Mechanics and Symmetry[M].New York:Springer-Verlag,1994.
Relative Articles
[1] BAO Siyuan, DENG Zichen. An Average Vector Field Method for Nonlinear Vibration Analysis [J]. Applied Mathematics and Mechanics, 2019, 40(1): 47-57. doi: 10.21656/1000-0887.390178
[2] BAI Long, DONG Zhi-feng, GE Xin-sheng. Lie Group and Lie Algebra Modeling for Numerical Calculation of Rigid Body Dynamics [J]. Applied Mathematics and Mechanics, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005
[3] ZHONG Wan-xie, GAO Qiang. Symplectic Group of the Transfer Matrix Converges to the Symplectic Lie Group [J]. Applied Mathematics and Mechanics, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001
[4] Abdul-Kahar Rosmila, Ramasamy Kandasamy, Ismoen Muhaimin. Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification [J]. Applied Mathematics and Mechanics, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005
[5] Mehmet Pakdemirli, Yigit Aksoy. Group Classification for the Path Equation Describing Minimum Drag Word and Symmetry Reductions [J]. Applied Mathematics and Mechanics, 2010, 31(7): 868-873. doi: 10.3879/j.issn.1000-0887.2010.07.012
[6] Ramasamy Kandasamy, Muhaimin. Lie Group Analysis for the Effect of Temperature-Dependent Fluid Viscosity and Thermophoresis Particle Deposition on Free Convective Heat and Mass Transfer in the Presence of Variable Stream Conditions [J]. Applied Mathematics and Mechanics, 2010, 31(3): 295-305. doi: 10.3879/j.issn.1000-0887.2010.03.005
[7] QIN Mao-chang, MEI Feng-xiang, XU Xue-jun. Nonclassical Potential Symmetries and Invariant Solutions of Heat Equation [J]. Applied Mathematics and Mechanics, 2006, 27(2): 217-222.
[8] ZHANG Rong-ye. Invariant Form and Integral Invariants on Kähler Manifolds [J]. Applied Mathematics and Mechanics, 2006, 27(2): 243-252.
[9] FANG Jian-hui, CHEN Pei-sheng, ZHANG Jun. Form Invariance and Lie Symmetry of Variable Mass Nonholonomic Mechanical System [J]. Applied Mathematics and Mechanics, 2005, 26(2): 187-192.
[10] LI Ying-hui, GAO Qing, JIAN Kai-lin, YIN Xue-gang. Dynamic Responses of Viscoelatic Axially Moving Belt [J]. Applied Mathematics and Mechanics, 2003, 24(11): 1191-1196.
[11] ZHANG Rong-ye. Dynamics in Newtonian-Riemannian Space-Time(Ⅳ) [J]. Applied Mathematics and Mechanics, 2001, 22(4): 393-403.
[12] Shen Boqian. An Analogue Rotated Vector Field of Polynomial System [J]. Applied Mathematics and Mechanics, 2000, 21(5): 541-546.
[13] Hou Bihui, Yang Hongbo. A Group Representation of Canonical Transformation [J]. Applied Mathematics and Mechanics, 1998, 19(4): 321-326.
[14] Zhang Hongqing, Tang Limin, Chao Lu. Taylor Polynomial Stepwise Refinement Algorithm for Lie and High Symmetries of Partial Differential Equations [J]. Applied Mathematics and Mechanics, 1998, 19(3): 195-201.
[15] Zhang Rongye. Lagrangian Vector Field on Kahler Manifold [J]. Applied Mathematics and Mechanics, 1996, 17(9): 849-855.
[16] Xu Xue-zi, Chen Huai-yong. Application of One-Parameter Groups of Transformation in Mechanics [J]. Applied Mathematics and Mechanics, 1990, 11(7): 636-642.
[17] Su Ming-de, Pan Yu. A Theoretical Investigation on the Wave Forces on the Multiple Cylinders in Shallow Water [J]. Applied Mathematics and Mechanics, 1987, 8(4): 367-376.
[18] Ou Yang-chang, Zhu Han. On a Class of Method for Solving Problems with Random Boundary Notches and/or Cracks-(IV) Computations for Deep Boundary Notches and/or Cracks [J]. Applied Mathematics and Mechanics, 1986, 7(1): 7-16.
[19] Ouyang Chang, Zu Hang. On a Class of Method for Solving Problems with Random Boundary Notches and/or Cracks——(Ⅲ) Computations for Boundary Cracks [J]. Applied Mathematics and Mechanics, 1985, 6(8): 671-680.
[20] Ouyang Chang, Zhu Han. On a Class of Method for Solving Problems with Random Boundary Notches and/or Cracks-(Ⅱ) Computations for Boundary Notches [J]. Applied Mathematics and Mechanics, 1984, 5(2): 153-158.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 18.0 % FULLTEXT : 18.0 % META : 81.2 % META : 81.2 % PDF : 0.8 % PDF : 0.8 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 6.8 % 其他 : 6.8 % China : 0.8 % China : 0.8 % Singapore : 0.4 % Singapore : 0.4 % 北京 : 1.0 % 北京 : 1.0 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 山景城 : 0.1 % 山景城 : 0.1 % 张家口 : 3.2 % 张家口 : 3.2 % 武汉 : 0.1 % 武汉 : 0.1 % 海口 : 0.4 % 海口 : 0.4 % 深圳 : 0.4 % 深圳 : 0.4 % 漯河 : 0.1 % 漯河 : 0.1 % 芒廷维尤 : 8.4 % 芒廷维尤 : 8.4 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 77.5 % 西宁 : 77.5 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.1 % 郑州 : 0.1 % 其他 China Singapore 北京 南宁 哥伦布 山景城 张家口 武汉 海口 深圳 漯河 芒廷维尤 苏州 西宁 西安 郑州