Bi Qinsheng, Chen Yushu. Bifurcation Analysis of a Double Pendulum With Internal Resonance[J]. Applied Mathematics and Mechanics, 2000, 21(3): 226-234.
Citation: Bi Qinsheng, Chen Yushu. Bifurcation Analysis of a Double Pendulum With Internal Resonance[J]. Applied Mathematics and Mechanics, 2000, 21(3): 226-234.

Bifurcation Analysis of a Double Pendulum With Internal Resonance

  • Received Date: 1998-11-23
  • Publish Date: 2000-03-15
  • By employing the normal form theory, the Hopf bifurcation and the transition boundary of an autonomous double pendulum with 1:1 internal resonance at the critical point is studied. The results are compared with numerical solutions. Further, by numerical methods, the road to chaos of a non-autonomous system is presented in the end.
  • loading
  • [1]
    Huseyin K.Multiple-Parameter Stability Theory and Its Applications[M].Oxford:Oxford University Press,1986.
    [2]
    Yu P, Huseyin K.A perturbation analysis of interactive static and dynamic bifurcations[J].IEEE Transactions of Automatic Control,1988,33:28~41.
    [3]
    Guckenheimer J, Holmes P.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1983.
    [4]
    毕勤胜,陈予恕.Duffing系统解的转迁集的解析表达式[J].力学学报,1997,8(12):573~581.
    [5]
    Yu P, Huseyin K.Static and dynamic bifurcations associated with a double zero eigenvalues[J].Dynamics and Stability of Systems,1986,1:73~86.
    [6]
    陈予恕.非线性振动系统的分叉和混沌理论[M].北京:高等教育出版社,1993.
    [7]
    毕勤胜,陈予恕.周期激励浅拱的内共振分岔研究[J].力学学报,1998,30(1):83~88.
    [8]
    Mandadi V, Huseyin K.Nonlinear bifurcation analysis of non-gradient systems[J].International Journal of Non-Linear Mechanics,1980,15(2):159~172.
    [9]
    Huseyin K, Yu P.On bifurcations into nonresonant quasi-periodic motions[J].Applied Mathematical Modelling,1988,12:189~201.
    [10]
    Scheidl R, Troger H, Zaman K.Coupled flutter and divergence bifurcation of a double pendulum[J].International Journal of Non-Linear Mechanics,1984,19(2):163~176.
    [11]
    Samaranayake S, Bajaj A K.Bifurcation in the dynamics of an orthogonal double pendulum[J].Nonlinear Dynamics,1993,4:605~633.
    [12]
    Pei Yu, Bi Qinsheng.Analysis of nonlinear dynamics and bifurcations of a double pendulum[J].Journal of Sound and Vibration,1998,217(4):691~736.
    [13]
    Bi Qinsheng and Pei Yu, Symbolic computation of normal forms for semi-simple cases[J].Journal of Computational and Applied Mathematics,1999,102(2):195~220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2630) PDF downloads(828) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return