Li Shu, Zhuo Jiashou, Ren Qingwen. Parameter Identification of Dynamic Models Using a Bayes Approach[J]. Applied Mathematics and Mechanics, 2000, 21(4): 402-408.
Citation:
Li Shu, Zhuo Jiashou, Ren Qingwen. Parameter Identification of Dynamic Models Using a Bayes Approach[J]. Applied Mathematics and Mechanics, 2000, 21(4): 402-408.
Li Shu, Zhuo Jiashou, Ren Qingwen. Parameter Identification of Dynamic Models Using a Bayes Approach[J]. Applied Mathematics and Mechanics, 2000, 21(4): 402-408.
Citation:
Li Shu, Zhuo Jiashou, Ren Qingwen. Parameter Identification of Dynamic Models Using a Bayes Approach[J]. Applied Mathematics and Mechanics, 2000, 21(4): 402-408.
The Bayesian method of statistical analysis has been applied to the parameter identification problem.A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies.This is based on the solution of an inverse generalized eigenvalue problem.The stochastic nature of test date is considered and a normal distribution is used for the measurement frequencies.An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure.A numerical example demonstrates the efficiency of the method.
Friedland S,Nocedal J,Overton M L.The formulation and analysis numerical methods for inverse eigenvalue problems[J].SIAM J Number Anal,1987,24(3):634~667.
[5]
Ojalvo I U.Efficient computation of mode shape derivatives for large dynamic systems[J].AIAA J,1987,25(10):1384~1390.
[6]
Dennis J E.Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M].Englewood Cliffs NJ:Prentice-Hall,1983.
[7]
Sun Jiguang.A note on local behavior of multiple eigenvalue[J].SIAM J Matrix Anal Appl,1989,10(4):533~541.