Citation: | Duan Jiwei, Li Qiguan. 4th Order Spline Wavelets on a Bounded Interval[J]. Applied Mathematics and Mechanics, 2000, 21(4): 393-401. |
[1] |
Chen Mingquayer,Hwang Chyi,Shih Yenping.A wavelet-Galerkin method for solving population balance equations[J].Computers Chem Engng,1996,20(2):131~145.
|
[2] |
Chen Mingquayer,Hwang Chyi,Shin Yehping.The computation of wavelet-Galerkin approximation on a bounded interval[J].International Journal for Numerical Methods in Engineering,1996,39:2921~2944.
|
[3] |
Williams John R,Amaratunga Kevin.Introduction to wavelets in engineering[J].International Journal for Numerical Method in Engineering,1994,37(14):2365~2388.
|
[4] |
Chen W H,Wu C W.A spline wavelet element method for frame structure vibration[J].Computational Mechanics,1995,16(1):11~12.
|
[5] |
Daubechies Ingrid.Two recent results on wavelets:wavelet bases for the interval,and biothogonal wavelets diagonalizing the derivative operator[A].In:Larry L Schumaker,Glenn Webb Eds.Recent Advances in Wavelet Analysis,Academic Press,Incorporeted,1993.
|
[6] |
Quak Ewald,Weyrich Norman.Wavelets on the interval[A].In:Singh S P Ed.Approximation Theory Wavelets and Applications[C].1995.
|
[7] |
Quak Ewald,Weyrich Norman.Decomposition and reconstruction algorithms for spline wavelets on a bounded interval[J].Applied and Computational Harmonic Analysis,1994,1:217~231.
|
[8] |
关履泰.有限区间截断B样条小波及其消失矩性质[J].中山大学学报(自然科学版),1996,35(3):28~33.
|