Guo Ruihai, Yuan Xiaofeng. Hopf Bifurcation for a Ecological Mathematical Model on Microbe Populations[J]. Applied Mathematics and Mechanics, 2000, 21(7): 693-700.
Citation: Guo Ruihai, Yuan Xiaofeng. Hopf Bifurcation for a Ecological Mathematical Model on Microbe Populations[J]. Applied Mathematics and Mechanics, 2000, 21(7): 693-700.

Hopf Bifurcation for a Ecological Mathematical Model on Microbe Populations

  • Received Date: 1998-09-30
  • Rev Recd Date: 2000-04-13
  • Publish Date: 2000-07-15
  • The ecological Model of a class of the two microbe populations with second-order growth rate is studied.The methods of qualitative theory of ordinary differential equations are used in the four-dimension phase space.The qualitative property and stability of equilibrium points are analysed. The conditions under which the positive equilibrium point exists and becomes and O+ attractor are obtained.The problems on Hopf bifurcation are discussed in detail when small perturbation occurs.
  • loading
  • [1]
    袁晓凤,刘世泽,郭瑞海等. 厌氧消化过程三种群微生物生态数学模型的定性分析[J]. 四川大学学报(自然科学版),1997,34(3):373~376.
    [2]
    梅茨基 B.B, 斯捷巴诺夫 B.B. 微分方程定性理论[M].(王柔怀译)北京: 科学出版社,1959,201~230.
    [3]
    刘世泽. n维空间奇点的拓扑分类[J]. 数学进展,1965,8(3):217~242.
    [4]
    Hartman P. Ordinary Differential Equation[M]. Baston: Birkhauser,1982,228~250.
    [5]
    李继彬,冯贝叶. 稳定性、分支与混沌[M]. 昆明: 云南科技出版社,1995,85~127.
    [6]
    Wiggins S. Introduction to Applied Nonlinear Dynamical System and Chaos[M]. New York: Springer-verlag,1990,193~284.
    [7]
    Liu Zhenrong, Jing Zhujun. Qualitative analysis for a third-order differential equation in a model of chemical systems[J]. Syst Scie Math Scie,1992,5(4):299~309.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2816) PDF downloads(662) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return