ZHANG Nian-mei, HAN Qiang, YANG Gui-tong, XU Bing-ye. Anomalous Dynamics Response of Nonlinear Elastic Bar[J]. Applied Mathematics and Mechanics, 2000, 21(9): 909-915.
Citation: ZHANG Nian-mei, HAN Qiang, YANG Gui-tong, XU Bing-ye. Anomalous Dynamics Response of Nonlinear Elastic Bar[J]. Applied Mathematics and Mechanics, 2000, 21(9): 909-915.

Anomalous Dynamics Response of Nonlinear Elastic Bar

  • Received Date: 1999-09-03
  • Rev Recd Date: 2000-06-08
  • Publish Date: 2000-09-15
  • The dynamics behavior of tension bar with periodic tension velocity was presented. Melinkov method was used to study the dynamic system.The results show that material nonlinear may result in anomalo us dynamics response.The subharmonic bifurcation and chaos may occur in the determined system when the tension velocity exceeds the critical value.
  • loading
  • [1]
    Moon F C, Shaw S W. Chaotic vibration of a beam with nonlinear boundary conditions[J]. Non-Linear Mech,1983,18(6).
    [2]
    Ramu Anantha S, Sankar T S, Ganesan R. Bifurcations, catastrophes and chaos in a pre-buckled beam[J]. Int J Nonlinear Mechanics,1994,29(3).
    [3]
    赵建宏,蔡中民. 非线性粘弹性圆柱杆在阶跃载荷速度下的迭代解[A]. 力学与工程应用[M]. 太原:山西高教联合出版社,1994.
    [4]
    蔡中民. 零级次弹性圆柱杆在阶跃速度拉伸时的惯性效应[J]. 工程力学,1993(增刊).
    [5]
    Lenci S, Menditto G, Tarantino A M. The chaotic resonance[J]. Eur J Mech A/Solid,1994,13(6).
    [6]
    Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Befurcations of Vector Fields[M]. Springer-Verlag,1983.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2361) PDF downloads(539) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return