Citation: | WAN De-cheng, WEI Guo-wei. The Study of Quasi-Wavelets Based Numerical Method Applied to Burgers’ Equations[J]. Applied Mathematics and Mechanics, 2000, 21(10): 991-1001. |
[1] |
Morlet J,Arens G,Fourgeau E,et al.Wave propagation and sampling theory and complex waves[J].Geophysics,1982,47(2):222-236.
|
[2] |
Chui C K.An Introduction to Wavelets[M].San Diego:Academic Press,1992.
|
[3] |
Wickerhauser M V.Adapted Wavelet Analysis From Theory to Software[M].Wellesley,MA:A K Peters,1994.
|
[4] |
Cohen A,Ryan R D.Wavelets and Multiscales Signal Processing[M].London:Chapman & Hall,1995.
|
[5] |
Qian S,Weiss J.Wavelet and the numerical solution of partial differential equations[J].J Comput Phys,1993,106(1):155-175.
|
[6] |
Vasilyev O V,Paolucci S.A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in finite domain[J].J Comput Phys,1996,125(2):498-512.
|
[7] |
王诚.低雷诺数下N-S方程的积分方程解法——Gaussian小波分析的应用[D].博士论文.上海:上海交通大学,1997.
|
[8] |
Prosser R,Cant R S.On the use of wavelets in computational combustion[J].J Comput Phys,1998,147(2):337-361.
|
[9] |
Haar A.Zer theorie der orthogonalen funktionensysteme[J].Math Annal,1910,69(3):331-371.
|
[10] |
Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Transactions of the American Mathematical Society,1989,315(1):68-87.
|
[11] |
Wei G W,Zhang D S,Kouri D J.Lagrange distributed approximating functionals[J].Phys Rev Lett,1997,79(5):775-779.
|
[12] |
Wei G W,Quasi wavelets and quasi interpolating wavelets[J].Chem Phys Lett,1998,296(3-4):215-222.
|
[13] |
Wei G W.Discrete singular convolution for the Fokker-Planck equation[J].J Chem Phys,1999,110(18):8930-8942.
|
[14] |
Cole J D.On a quasi-linear parabolic equation occurring in aerodynamics[J].Quart Appl Math,1951,9(2):225-236.
|
[15] |
Basdevant C,Deville M,Haldenwang P,et al.Spectral and finite difference solutions of the Burgers equation[J].Comput & Fluids,1986,14(1):23.
|