XIONG Yong, SHI Ding-hua. Affine Transformation in Random Iterated Function Systems[J]. Applied Mathematics and Mechanics, 2001, 22(7): 729-734.
Citation: XIONG Yong, SHI Ding-hua. Affine Transformation in Random Iterated Function Systems[J]. Applied Mathematics and Mechanics, 2001, 22(7): 729-734.

Affine Transformation in Random Iterated Function Systems

  • Received Date: 2000-05-16
  • Rev Recd Date: 2001-03-20
  • Publish Date: 2001-07-15
  • Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affin transformation. Two particular examples are used to show this approach.
  • loading
  • [1]
    Barnsley M F.Fractals Everywhere[M].Orlando,F L:Academic Press Inc,1988.
    [2]
    林贻侠,朱铨范,仲明瑜,等.吸引子在随机迭代函数系统中的作用[J].上海大学学报,1999,5(1):46-53.
    [3]
    苏步青,华宣积.应用几何教程[M].上海:复旦大学出版社,1990.
    [4]
    Andrzej Lasota,Michael C.Mackey chaos,fractals and noise[A].Stochastic Aspects of Dynamics[M].New York:Springer-Verlag,Inc,1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2161) PDF downloads(1162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return