[1] | ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178 |
[2] | YU Kangning, GUO Lihui. Limits of Riemann Solutions for Generalized Chaplygin Gas Magnetohydrodynamic Euler Equations With Source Terms[J]. Applied Mathematics and Mechanics, 2020, 41(4): 420-437. doi: 10.21656/1000-0887.400122 |
[3] | WEI Mei-hua, CHANG Jin-yong, QI Lan>, ZHANG Qiao-wei. Pattern Formation of Nonconstant Steady-State Solutions to the n-Dimensional Glycolysis Model[J]. Applied Mathematics and Mechanics, 2014, 35(8): 930-938. doi: 10.3879/j.issn.1000-0887.2014.08.011 |
[4] | T.Hayat, S.A.Shehzad, A.Alsaedi. Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007 |
[5] | CHEN Sheng. Effect of Richardson Number on Entropy Generation Over a Backward Facing Step[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1330-1339. doi: 10.3879/j.issn.1000-0887.2012.11.008 |
[6] | K. Ramakrishnan, K. Shailendhra. Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003 |
[7] | ZHANG Ji, FANG Tie-gang, ZHONG Yong-fang. Exact Analytical Solution of the Magnetohydrodynamic Sink Flow[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1139-1147. doi: 10.3879/j.issn.1000-0887.2011.10.001 |
[8] | SU Xiao-hong, ZHENG Lian-cun. Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall[J]. Applied Mathematics and Mechanics, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002 |
[9] | P. Loganathan, P. Puviarasu, R. Kandasamy. Local Non-Similarity Solution for the Impact of Chemical Reaction on MHD Mixed Convection Heat and Mass Transfer Flow Over a Porous Wedge in the Presence of Suction/Injection[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1435-1444. doi: 10.3879/j.issn.1000-0887.2010.12.004 |
[10] | S. Nadeem, Anwar Hussain. MHD Flow of a Viscous Fluid on a Non-Linear Porous Shrinking Sheet by Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1473-1481. doi: 10.3879/j.issn.1000-0887.2009.12.008 |
[11] | S. L. Maji, A. K. Kanch, M. Guria, R. N. Jana. Hall Effects on Hydromagnetic Flow on an Oscillating Porous Plate[J]. Applied Mathematics and Mechanics, 2009, 30(4): 469-478. |
[12] | K. Hooman, A. Ejlali, F. Hooman. Entropy Generation Analysis of Thermally Developing Forced Convection in a Fluid-Saturated Porous Medium[J]. Applied Mathematics and Mechanics, 2008, 29(2): 209-216. |
[13] | Bikash Sahoo, H. G. Sharma. MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1307-1317. |
[14] | LIU Fa-gui. Life-Span of Classical Solutions for One Dimensional Hydromagnetic Flow[J]. Applied Mathematics and Mechanics, 2007, 28(4): 462-470. |
[15] | K. Hooman, H. Gurgenci. Effects of Temperature-Dependent Viscosity Variation on Entropy Generation,Heat,and Fluid Flow Through a Porous-Saturated Duct of Rectangular Cross-Section[J]. Applied Mathematics and Mechanics, 2007, 28(1): 61-69. |
[16] | Wang Boyi, Tao Feng. Flat-Plate Boundary-Layer Flows Induced by Dusty Shock Wave[J]. Applied Mathematics and Mechanics, 1996, 17(5): 419-425. |
[17] | Lü Xian-qing. Stability of the Burgers Shock Wave[J]. Applied Mathematics and Mechanics, 1993, 14(10): 929-930. |
[18] | Wu Qing-song, Wang Bo-yi. Numerical Simulation of 1-D Unsteady Two-Phase Flows with Shocks[J]. Applied Mathematics and Mechanics, 1992, 13(7): 605-611. |
[19] | Liu Zhen-bei, Wang Cheng-min. An Approximate Solution Considering Flow Inertia between Conical Surfaces[J]. Applied Mathematics and Mechanics, 1988, 9(3): 253-265. |
[20] | Wang Zhi-qing, Liu Zhen-bei. An Approximate Solution Considered Flow Inertia between Spherical Surfaces[J]. Applied Mathematics and Mechanics, 1984, 5(2): 263-276. |