MA Jun-hai, CHEN Yu-shu. Study for the Bifurcation Topological Structure and the Global Complicated Character of a Kind of Non-Linear Finance System(Ⅱ)[J]. Applied Mathematics and Mechanics, 2001, 22(12): 1236-1242.
Citation: MA Jun-hai, CHEN Yu-shu. Study for the Bifurcation Topological Structure and the Global Complicated Character of a Kind of Non-Linear Finance System(Ⅱ)[J]. Applied Mathematics and Mechanics, 2001, 22(12): 1236-1242.

Study for the Bifurcation Topological Structure and the Global Complicated Character of a Kind of Non-Linear Finance System(Ⅱ)

  • Received Date: 2000-08-30
  • Rev Recd Date: 2001-04-26
  • Publish Date: 2001-12-15
  • Based on the work discussed on the former study, this article first starts from the mathe matical model of a kind of complicated financial system, and analyses all possible things that the mod el shows in the operation of our country's macro-financial system:balance, stable periodic, fractal, Hopf-bifurcation, the relationship between parameters and Hopf-bifurcation, and chaotic motion etc. By the changes of parameters of all economic meanings, the conditions on which the complicated be haviors occur in such a financial system, and the influence of the adjustment of the macro-economic policies and adjustment of some parameter on the whole financial system behavior have been ana lyzed. This study will deepen people's understanding of the lever function of all kinds of financial policies.
  • loading
  • [1]
    成思危.复杂科学与管理[A].见:成思危编.北京香山会议论文集[C].北京:科学出版社,1998,1-9.
    [2]
    黄登仕,李后强.非线性经济学的理论和方法[M].成都:四川大学出版社,1993.
    [3]
    陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995.
    [4]
    李京文.混沌理论与经济学[J].数量经济技术经济研究,1991,24(2):19-26.
    [5]
    Brunella M,Miarim.Topological equivalence of a place vector field with its principal past defined through Newton polyhedra[J].J Differential Equations,1990,85(6):338-366.
    [6]
    Cima A,Llibre.Algebraic and topological classification of the homogenenous cubicvector fields in the plane[J].J Math Anal Appl,1990,47(4):420-448.
    [7]
    Omer Morgul.Necessary condition for observer-based chaos synchron ization[J].Phys Rev Lett,1999,82(9):77-80.
    [8]
    杨小京.一类平面齐次多项式系统的局部相图[J].系统科学与数学,1999,19(4):150-156.
    [9]
    Clerc M,Coullet P,Tirapegui E.Lorenz bifurcation:insta bilities in quasireversible systems[J].Phys Rev Lett,1999,19(11):3820-3823.
    [10]
    Sengupta Jati K,Sfeir Raymond E.Nonlinear dynamics in for eignexchange markets[J].International Journal of Systems Science,1998,29(11):1213-1224.
    [11]
    马军海.陈予恕.一类金融系统分岔混沌拓扑结构与全局复杂性研究(Ⅰ) [J].应用数学和力学,2001,22(11):1119-1128.
    [12]
    Freedman H I,Singh M,Easton A K,et al.Mathematical models of population distribution within a culture group[J].Mathematical and Computer Modelling,1999,29(6):257-267.
    [13]
    Lipton-Lifschitz Alexander.Predictability and unpredictability in financial markets[J].Phys D,1999,133(12):321-347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3251) PDF downloads(829) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return