Citation: | ZHU Zheng-you, LI Gen-guo, CHENG Chang-jun. Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation[J]. Applied Mathematics and Mechanics, 2002, 23(1): 1-10. |
[1] |
GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96.
|
[2] |
BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155.
|
[3] |
Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3):294-298.
|
[4] |
Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[J].Appl Mech Rev, 1997, 50(1): 15-67.
|
[5] |
Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163.
|
[6] |
Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932.
|
[7] |
陈立群,程昌钧.非线性粘弹性梁的动力学行为[J].应用数学和力学,2000,21(9):897-902.
|
[8] |
Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993.
|
[9] |
罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994.
|
[10] |
Spinelli R A.Numerocal inversion of a Laplace transform[J].SIAMJNumer Anal, 1966,3(4):636-649.
|
[11] |
刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
|