Citation: | ZHU Zheng-you, LI Gen-guo, CHENG Chang-jun. Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation[J]. Applied Mathematics and Mechanics, 2002, 23(1): 1-10. |
[1] |
GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96.
|
[2] |
BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155.
|
[3] |
Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3):294-298.
|
[4] |
Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[J].Appl Mech Rev, 1997, 50(1): 15-67.
|
[5] |
Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163.
|
[6] |
Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932.
|
[7] |
陈立群,程昌钧.非线性粘弹性梁的动力学行为[J].应用数学和力学,2000,21(9):897-902.
|
[8] |
Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993.
|
[9] |
罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994.
|
[10] |
Spinelli R A.Numerocal inversion of a Laplace transform[J].SIAMJNumer Anal, 1966,3(4):636-649.
|
[11] |
刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
|
[1] | KOU Lei, XU Jianguo, WANG Bo. Dynamic Response Analysis of Viscoelastic Multilayered Foundation in the Cartesian Coordinate System[J]. Applied Mathematics and Mechanics, 2018, 39(5): 529-537. doi: 10.21656/1000-0887.380155 |
[2] | LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106 |
[3] | LIU Xue-mei, DENG Zi-chen, HU Wei-peng. A Multi-Symplectic Method for Dynamic Responses of Incompressible Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2015, 36(3): 242-251. doi: 10.3879/j.issn.1000-0887.2015.03.002 |
[4] | DONG Man-sheng, LI Man, LIN Zhi, TANG Fei, JIANG Shu-ping. Dynamic Response of the Submerged Floating Tunnel Under Random Seismic Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1320-1329. doi: 10.3879/j.issn.1000-0887.2014.12.004 |
[5] | WANG Xiao-gang, HUANG Yi. 3-D Dynamic Response of Transversely Isotropic Saturated Soils[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1278-1286. |
[6] | DAI Jun, CHEN Jian-jun, LI Yong-gong, ZHAO Zhu-qing, MA Hong-bo. Dynamic Response Optimization Design for Engineering Structures Based on Reliability[J]. Applied Mathematics and Mechanics, 2003, 24(1): 39-46. |
[7] | LI Ying-hui, GAO Qing, YIN Xue-gang. Nonlinear Dynamic Response and Active Vibration Control of the Viscoelastic Cable With Small Sag[J]. Applied Mathematics and Mechanics, 2003, 24(5): 529-536. |
[8] | LI Ying-hui, GAO Qing, JIAN Kai-lin, YIN Xue-gang. Dynamic Responses of Viscoelatic Axially Moving Belt[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1191-1196. |
[9] | ZHU Zheng-you, LI Gen-guo, CHENG Chang-jun. A Numerical Method for Fractional Integral With Applications[J]. Applied Mathematics and Mechanics, 2003, 24(4): 331-341. |
[10] | LI Gen-guo, ZHU Zheng-you, CHENG Chang-jun. Dynamical Stability of Viscoelastic Column With Fractional Derivative Constitutive Relation[J]. Applied Mathematics and Mechanics, 2001, 22(3): 250-258. |
[11] | Chen Rongyi, Shen Xiaopu, Shen Pengcheng. Dynamic Response of Elastic RectangularPlates by Spline State Variable Method[J]. Applied Mathematics and Mechanics, 2000, 21(6): 625-632. |
[12] | Jin Bo. Using Fredholm Integral Equation of the Second Kind to Solve the Vertical Vibration of Elastic Plate on an Elastic Half Space[J]. Applied Mathematics and Mechanics, 1998, 19(2): 145-150. |
[13] | Sun Lu, Deng Xuejun. Dynamic Analysis to Infinite Beam under a Moving Line Load with Uniform Velocity[J]. Applied Mathematics and Mechanics, 1998, 19(4): 341-347. |
[14] | Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate(Ⅱ)——Theoretical Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(2): 95-103. |
[15] | Peng Jianshe, Zhang Jingyu, Yang Jie. Formulation of a Semi-Analytical Approach Based on Gurtin Variational Principle for Dynamic Response of General Thin Plates[J]. Applied Mathematics and Mechanics, 1997, 18(11): 987-991. |
[16] | Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)[J]. Applied Mathematics and Mechanics, 1997, 18(3): 211-216. |
[17] | Yin Bangxin. Analysis of Dynamic Responce of an impacted Elastic Plate[J]. Applied Mathematics and Mechanics, 1996, 17(7): 639-644. |
[18] | Ji Zhen-yi, Yeh Kai-yuan. The General Solution for Dynamic Response of Nonhomogeneous Beam with Variable Cross Section[J]. Applied Mathematics and Mechanics, 1994, 15(5): 381-388. |
[19] | Fu Yi-ming, Liu Xiao-hu. Nonlinear Dynamic Response and Dynamic Buckling of Shallow Spherical Shells with Circular Hole[J]. Applied Mathematics and Mechanics, 1992, 13(2): 145-156. |
[20] | Yeh Kai-yuan, Tong Xiao-hua, Ji Zhen-yi. General Analytic Solution of Dynamic Response of Beams with Nonhomogeneity and Variable Cross Section[J]. Applied Mathematics and Mechanics, 1992, 13(9): 753-764. |