ZHU Zheng-you, LI Gen-guo, CHENG Chang-jun. Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation[J]. Applied Mathematics and Mechanics, 2002, 23(1): 1-10.
Citation: ZHU Zheng-you, LI Gen-guo, CHENG Chang-jun. Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation[J]. Applied Mathematics and Mechanics, 2002, 23(1): 1-10.

Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation

  • Received Date: 2000-10-27
  • Rev Recd Date: 2001-08-23
  • Publish Date: 2002-01-15
  • The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived.The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation.The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained.The influence of material paraeters on the deflection is investigated.The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions.And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.
  • loading
  • [1]
    GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96.
    [2]
    BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155.
    [3]
    Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3):294-298.
    [4]
    Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[J].Appl Mech Rev, 1997, 50(1): 15-67.
    [5]
    Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163.
    [6]
    Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932.
    [7]
    陈立群,程昌钧.非线性粘弹性梁的动力学行为[J].应用数学和力学,2000,21(9):897-902.
    [8]
    Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993.
    [9]
    罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994.
    [10]
    Spinelli R A.Numerocal inversion of a Laplace transform[J].SIAMJNumer Anal, 1966,3(4):636-649.
    [11]
    刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2772) PDF downloads(818) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return