LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216.
Citation:
LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216.
LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216.
Citation:
LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216.
On Numerical Solutios of Periodically Perturbed Conservative Systems
1.
Department of Basic Science, Nanjing University of Chemical Technology, Nanjing 210009, P R China;
2.
Department of Mathematics, Nanjing University, Nanjing 210093, P R China
Received Date: 2000-09-29
Rev Recd Date:
2001-06-26
Publish Date:
2002-02-15
Abstract
A nonlinear perturbed conservative system is discussed. By means of Hadamard. stheorem, the existence and uniqueness of the solution of the continuous problem are proved. When the equation is discreted on the uniform meshes, it is proved that the corresponding discrete problem has a unique solution. Finally, the accuracy of the numerical solution is considered and a simple algorithm is provided for solving the nonlinear difference equation.
References
[1]
Lazer A C,Sanches D A.On periodically perturbed conservative systems[J].Mich Math Ⅰ,1969,16(2):193-200.
[2]
Amaral L,Pera M P.On periodic solutions of nonconservative systems[J].Nonlinear Analysis,1982,6(7):733-743.
[3]
Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1):193-201.
[4]
Meyer G H.On solving nonlinear equations with a one-parameter operator imbedding[J].SIAM J Numer Anal,1968,5(4):739-752.
[5]
Lazer A C.Application of Lemma on bilinear forms to a problem in nonlinear Oscillations[J].Proc Amer Math Soc,1972,33(1):89-94.
[6]
Dunford V,Schwartz J T.Linear Operator[M].Vol Ⅱ,New York:Interscience,1963,1289.
[7]
Hadamard J.Sur les transformation ponctuelles[J].Bull Cos Math Fr,1906,34(1):71-84.
[8]
Li W,Shen Z.A construction proof of the periodic solution of Duffing equation[J].Chinese Science Bulletin,1997,22(42):1591-1594.
[9]
Plastick R.Homeomorphism between Banach space[J].Trans Amer Math Soc,1974,200(1):169-183.
[10]
Raduiescu M,Raduiescu S.Global inversion theorems and applications to differential equations[J].Nonlinear Analysis,1980,4(4):951-965.
[11]
Shen Z.On the periodic solution to the Newtonian equation of motion[J].Nonlinear Analysis,1989,13(2):145-149.
Relative Articles
[1] ZHAI Guoqing, CHEN Qiaoyu, TONG Dongbing, ZHOU Wuneng. Fixed-Time Asymptotic Stability and Energy Consumption Estimation of Nonlinear Systems [J]. Applied Mathematics and Mechanics, 2023, 44(10): 1180-1186. doi: 10.21656/1000-0887.440041
[2] MA Li, SUN Fangfang. Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions [J]. Applied Mathematics and Mechanics, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010
[3] WEI Yuheng, TONG Dongbing, CHEN Qiaoyu. Fault Estimation for Nonlinear Systems Based on Intermediate Estimators [J]. Applied Mathematics and Mechanics, 2021, 42(11): 1213-1220. doi: 10.21656/1000-0887.410335
[4] TONG Yinghao, TONG Dongbing, CHEN Qiaoyu, ZHOU Wuneng. Design of a Finite-Time State Estimator for Nonlinear Systems Under Event-Triggered Control [J]. Applied Mathematics and Mechanics, 2020, 41(6): 669-678. doi: 10.21656/1000-0887.400210
[5] JIANG Xin, PENG Hai-jun, ZHANG Sheng. Symplectic Conservative Approach for Solving Nonlinear Closed-Loop Feedback Control Problems Based on Quasilinearization Method [J]. Applied Mathematics and Mechanics, 2013, 34(8): 795-806. doi: 10.3879/j.issn.1000-0887.2013.08.003
[6] Mohammed Q Al-Odat, Abdalmajeed Al-Ghamdi. Numerical Investigation of the Dufour and Soret Effects on Unsteady MHD Natural Convection Flow Past a Vertical Plate Embedded in a Non-Darcy Porous Medium [J]. Applied Mathematics and Mechanics, 2012, 33(2): 195-209. doi: 10.3879/j.issn.1000-0887.2012.02.005
[7] ZHANG Yong, ZHU De-tong. Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems [J]. Applied Mathematics and Mechanics, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011
[8] ZENG Xiao-hui, SHEN Xiao-peng, WU Ying-xiang. Governing Equations and Numerical Solutions of Tension Leg Platform With Finite Amplitude Motion [J]. Applied Mathematics and Mechanics, 2007, 28(1): 34-44.
[9] YIN Chang-ming, WHANG Han-xing, ZHAO Fei. Risk-Sensitive Reinforcement Learning Algorithms With Generalized Average Criterion [J]. Applied Mathematics and Mechanics, 2007, 28(3): 369-378.
[10] MU Xiao-wu, GUO Xiao-li, CHENG Gui-fang. Adaptive H-infinity Control of a Class of Uncertain Nonlinear Systems [J]. Applied Mathematics and Mechanics, 2006, 27(9): 1056-1064.
[11] Aytekin Gülle. On the Numerical Solution of Quasilinear Wave Equation With Strong Dissipative Term [J]. Applied Mathematics and Mechanics, 2004, 25(7): 735-740.
[12] ZENG Liu-chuan. Existence and Algorithm of Solutions for General Multivalued Mixed Implicit Quasi-Variational Inequalities [J]. Applied Mathematics and Mechanics, 2003, 24(11): 1170-1178.
[13] XIU Nai-hua, GAO Zi-you. Convergence of a Modified SLP Algorithm for the Extended Linear Complementarity Problem [J]. Applied Mathematics and Mechanics, 2001, 22(5): 534-540.
[14] ZHANG Hong-qing, YAN Zhen-ya. Two Types of New Algorithms for Finding Explicit Analytical Solutions of Nonlinear Differential Equations [J]. Applied Mathematics and Mechanics, 2000, 21(12): 1285-1292.
[15] Zhou Yali, You Zhefeng, Lin Zongchi. Singular Perturbation of General Boundary Value Problem for Nonlinear Differential Equation System [J]. Applied Mathematics and Mechanics, 1998, 19(6): 497-504.
[16] Zhao Lei, Chen Qiu. An Equivalent Nonlinearization Method for Analysing Response of Nonlinear Systems to Random Excitations [J]. Applied Mathematics and Mechanics, 1997, 18(6): 513-521.
[17] Wang Yibing, Zhao Weijia, Pan Zhenkuan. A New Algorithm for Solving Differential/Algehraic Equations of Multibody System Dynamics [J]. Applied Mathematics and Mechanics, 1997, 18(9): 845-852.
[18] Lin Zong-chi, Lin Su-rong. Singular Perturbation of Initial Value Problem for a Nonlinear Second Order Systems [J]. Applied Mathematics and Mechanics, 1993, 14(2): 95-100.
[19] Sun Xing-ming, Luo Zhi-hui, Wei Ling-de. On the Inefficiency of the Quasi-Gradient Screening Algorithm [J]. Applied Mathematics and Mechanics, 1992, 13(6): 539-542.
[20] Su Yu-cheng, Liu Guo-qing. Numerical Solution of Singular Perturbation Problems for the Fourth-Order Elliptic Differential Equations [J]. Applied Mathematics and Mechanics, 1991, 12(10): 879-902.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 15.0 % FULLTEXT : 15.0 % META : 84.4 % META : 84.4 % PDF : 0.6 % PDF : 0.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 12.0 % 其他 : 12.0 % China : 0.4 % China : 0.4 % Singapore : 0.1 % Singapore : 0.1 % 上海 : 0.1 % 上海 : 0.1 % 北京 : 1.8 % 北京 : 1.8 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 山景城 : 0.4 % 山景城 : 0.4 % 张家口 : 2.3 % 张家口 : 2.3 % 昆明 : 0.2 % 昆明 : 0.2 % 杭州 : 0.6 % 杭州 : 0.6 % 武汉 : 0.1 % 武汉 : 0.1 % 洛杉矶 : 0.3 % 洛杉矶 : 0.3 % 深圳 : 0.2 % 深圳 : 0.2 % 石家庄 : 0.3 % 石家庄 : 0.3 % 纽约 : 0.1 % 纽约 : 0.1 % 芒廷维尤 : 8.7 % 芒廷维尤 : 8.7 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 71.7 % 西宁 : 71.7 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.1 % 郑州 : 0.1 % 长春 : 0.1 % 长春 : 0.1 % 其他 China Singapore 上海 北京 南宁 哥伦布 山景城 张家口 昆明 杭州 武汉 洛杉矶 深圳 石家庄 纽约 芒廷维尤 苏州 西宁 西安 郑州 长春