Citation: | LI Hong-da, YE Zheng-lin, GAO Hang-shan. On the Continuity and Differentiability of a Kind of Fractal Interpolation Function[J]. Applied Mathematics and Mechanics, 2002, 23(4): 422-428. |
[1] |
Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986,2(3):303-329.
|
[2] |
Barnsley M F.Fractal Everywhere[M].Boston:Academic Press,1988.
|
[3] |
Massopust Peter R.Fractal function and applications[J].Chaos Solitons & Fractal,1997,8(2):171-190.
|
[4] |
Peter Singer.Self-afine functions and wavelet series[J].J Math Appl,1999,240(2):518-551.
|
[5] |
Jacques Levy-Vehel.Fractal approaches in signal processing[J].Fractals,1995,3(4):715-775.
|
[6] |
Panagiotopoulos P D,Panagouli D.Mechanics on fractal bodies:Data compression using fractal[J].Chaos Solitons & Fractal,1997,8(2):253-267.
|
[7] |
谢和平,孙洪泉.分形插值曲面理论及应用[J].应用数学和力学,1998,19(4):297-306.
|
[8] |
Bedford T.Helder expontents and box dimension for self-affine fractal function[J].Constr Approx,1989,5(1):33-48.
|
[9] |
Donovan G,Geronimo J S,Massopust P R.Construction of orthogonal wavelets using fractal interpolation functions[J].SIAM J Math Anal,1996,27(4):1158-1192.
|
[10] |
Barnsley M F,Harring A N.The calculus of interpolation function[J].J Approx Theory,1989,57(1):14-34.
|