Citation: | ZENG Wen-ping, HUANG Lang-yang, QIN Meng-zhao. The Multi-Symplectic Algorithm for“Good” Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2002, 23(7): 743-748. |
[1] |
Ortega T,Sanz-Serma J M.Nonlinear stability and convergence of finite-difference methods for the "Good" Boussinesq equation [J].Numer Math,1990,58(3):215-229.
|
[2] |
Manoranjan V S,Mitchell A R,Morris J L L.Numerical solu tions of the "Good" Boussinesq equation[J].SIAM J Sci Stat Comput,1984,5(4):946-957.
|
[3] |
Manoranjan V S,Ortega T,Sanz-Serma J M.Solution and anti-soluti on interactions in the "Good" Boussinesq equation[J].J Math Phys,1988,29(9):1964-1968.
|
[4] |
FENG Kang,Qin M Z.The symplectic methods for the computation of Hamiltonian equations[A].In:ZHU You-lan,GUO Ben-yu Eds.Proc of 1-st Chinese Cong.on Numerical Methods of PDE's Shanghai,1986,Lecture Notes in Math[C].No 1279,Berlin:Springer,1987,1-37.
|
[5] |
FENG Kang.On difference schemes and symplectic geometry[A].In:FENG Kang Ed.Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations,Computation of Partial Differential Equations[C].Beijing:Science Press,1985,42-58.
|
[6] |
FENG Kang.Differenceschemes for Hamiltonian formulism an dsymplectic geometry[J].J Comput Math,1986,4(3):279-289.
|
[7] |
QIN Meng-zhao,Zhu W J.Construction of symplectic schemes for wave equations viahyperbolic functionssinh(x),cosh(x),tanh(x)[J].Computers Math Applic,1993,26(8):1-11.
|
[8] |
Bridges TH J,Reich S.Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[R].
|
[9] |
Bridges TH J.Multi-symplectic structures and wave propagation[J].Math Proc Cam Phil Soc,1997,121(2):147-190.
|
[10] |
Abbott M B,Basco D K.Computational Fluid Dynamics[M].Lon don:Longman Scientific & Technical,1989.
|
[11] |
Reich S.Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(5):473-499.
|