Citation: | LUO Zhen-dong, ZHU Jiang, WANG Hui-jun. A Nonlinear Galerkin/Petrov-Least Squares Mixed Element Method for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(7): 697-706. |
[1] |
Foias C,Manley O P,Temam R.Modelization of the interaction of small and large eddies in two dimensional turbulent flows[J].Math Mod Numer Anal,1988,22(2):93-114.
|
[2] |
Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal,1989,2(5):1139-1157.
|
[3] |
Foias C,Jolly M,Kevrekidis I G,et al.Dissipativity of numerical schemes[J].Nonlinearity,1991,4(4):591-613.
|
[4] |
Devulder C,Marion M,Titi E.On therate of convergence of nonlinear Galerkin methods[J].Math Comp,1992,59(200):173-201.
|
[5] |
Marion M,Temam R.Nonlinear Galerkin methods:the finite elementcase[J].Numer Math,1990,57(3):205-226.
|
[6] |
Marion M,Xu J C.Errorestimates on a new nonlinear Galer kinmeth od based on two-grid finite elements[J].SIAM J Numer Anal,1995,32 (4):1170-1184.
|
[7] |
Ait Ou Ammi A,Marion M.Nonlinear Galerkin methods and mixed finite elements:two-grid algorithms for the Navier-Stokes equations[J].Numer Math,1994,68(2):189-213.
|
[8] |
LI Kai-tai,Zhou L.Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations[J].Math Numer Sinica,1995,17(4):360-380.
|
[9] |
LUO Zhen-dong,Wang L H.Nonlinear Galerkin mixed element methods for the nonstationary conduction-convection problems(Ⅰ):The continuous-time case[J].Mathematica Numerica Sinica,1998,20(3):283-304.
|
[10] |
LUO Zhen-dong,Wang L H.Nonlinear Galerkin mixed element methods for the nonstationary conduction-convection problems(Ⅱ):The backward one-step Euler fully discrete format[J].Mathematica Numerica Sinica,1998,20[STBZ](4):90-108.
|
[11] |
Girault V,Raviart P A.Finite Element Approximations of the Navier-Stokes Equations:Theorem and Algorithms[M].New York:Springer-Verlag,1986.
|
[12] |
Temam R.Navier-Stokes Equations[M].New York,Amsterdam:North-Holland,1984.
|
[13] |
France L P,Hughes T J.Two classes of mixed finite element methods[J].Comput Methods Appl Mech Engrg,1988,69(1):89-129.
|
[14] |
Hughes T J,France L P,Balestra M.A new finite element formulation for computational fluid dynamics (Ⅴ):Circumventing the Bubuka-Brezzi condition:Astable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation[J].Comput Methods Appl Mech Engrg,1986,(1):85-99.
|
[15] |
Hughes T J,France L P.A new finite element formulation for computations fluid dynamics (Ⅶ):The Stokes problem with various well posed boundary conditions,symmetric formulations that converge for all velocity pressurespace[J].Comput Methods Appl Mech Engrg,1987,65(1):85-96.
|
[16] |
Brezzi F,Douglas Jr J.Stabilized mixed method for the Stokes problem[J].Numer Math,1988,53(2):225-235.
|
[17] |
Douglas Jr J,Wang J P.An absolutely stability finite element method for the stokes problem[J].Math Comp,1989,52(186):495-508.
|
[18] |
Houghes T J,Tezduyar T E.Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations [J].Comput Methods Appl Mech Engrg,1984,45(3):217-284.
|
[19] |
Johson C,Saranen J.Stremline diffusion methods for the incompre ssible Euler and Navier-Stokes equations[J].Math Comp,1986,47(175):1-18.
|
[20] |
Hansbo P,Szepessy A.Avelocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Engrg,1990,84(2):175-192.
|
[21] |
Zhou T X,Feng M F,Xiong H X.A new approach to stability of finite elements under divergence constraints[J].J Comput Math,1992,1 0(1):1-15.
|
[22] |
Zhou T X,Feng M F.A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Math Comp,1993,60(202):531-543.
|
[23] |
罗振东.有限元混合法理论基础及其应用:发展与应用[M].济南:山东教育出版社,1996.
|
[24] |
Ciarlet P G.The Finite Element Method for Elliptic Problems [M].Amsterdam:North-Holland,1978.
|