Citation: | XUAN Zhao-cheng, LI Xing-si. Unilateral Contact Problems Using Quasi-Active Set Strategy[J]. Applied Mathematics and Mechanics, 2002, 23(8): 811-818. |
[1] |
Bisbos C D. A Cholesky condensation method for unilateral contact problems[J]. Solid Mechanics Archives,1985,11(1):1-23.
|
[2] |
Panagiotopoulos P D. A nonlinear programming approach to the unilateral contact and friction boundary value problem in the theory of elasticity[J]. Ingenieur Archiv,1974,44(3):421-432.
|
[3] |
Kikuchi N, Oden J T. Contact Problems in Elasticity: A Study of Variational Inequalities and FEM[M]. Philadelphia:SIAM,1988.
|
[4] |
Zhong W X, Sun S M. A parametric quadratic programming approach to elastic contact problems with friction[J]. Comput & Structures,1989,32(1):37-43.
|
[5] |
Xuan Z C, Li X S, Sui Y K. Surrogate dual problem of quadratic programming and the algorithm[J]. Chinese J Numer Math Appl,1999,21(1):45-53.
|
[6] |
Rosen J B, Suzuki S. Construction of nonlinear programming test problems[J]. Comm of the ACM,1965,8(2):113.
|
[7] |
Simunovic S, Saigal S. A linear programming formulation for incremental contact analysis[J]. Internat J Numer Methods Engrg,1995,38(16):2703-2725.
|