Citation: | TIAN You-xan, ZHANG Shi-sheng. Convergence of Ishikawa Type Iterative Sequence With Errors for Quasi-Contractive Mappings in Convex Metric Spaces[J]. Applied Mathematics and Mechanics, 2002, 23(9): 889-895. |
[1] |
Chang Shi-sheng,Cho Y J,Jung J S,et al.Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces[J].J Math Anal Appl,1998,224(1):149-165.
|
[2] |
Ciric L B.A generalization of Banach's contraction principle[J].Proc Amer Math Soc,1974,45(1):267-273.
|
[3] |
Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[J].J Math Anal Appl,1998,228(1):254-264.
|
[4] |
Chidume C E.Global iterative schemes for strongly pseudo-contractive maps[J].Proc Amer Math Soc,1998,126(9):2641-2649.
|
[5] |
Rhoades H E.Convergence of an Ishikawa type iteration scheme for a generalized contraction[J].J Math Anal Appl,1994,185(2):350-355.
|
[6] |
XU Hong-kun.A note on the Ishikawa iteration scheme[J].J Math Anal Appl,1992,167(2):582-587.
|
[7] |
Rhoades H E.Comments on two fixed point iteration methods[J].J Math Anal Appl,1976,56(2):741-750.
|
[8] |
Naimpally S A,Singh K I.Extensions of some fixed point theorems of Rhoades[J].J Math Anal Appl,1983,96(2):437-446.
|
[9] |
LIU Qi-hou.On Naimpally and Singh's open questions[J].J Math Anal Appl,1987,124(1):157-164.
|
[10] |
LIU Qi-hou.A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J].J Math Anal Appl,1990,146(2):301-305.
|
[11] |
Takahashi W.A convexity in metric space and nonexpansive mappings Ⅰ[J].Kodai Math Sem Rep,1970,22(1):142-149.
|