Citation: | LUO Zhen-dong, ZHU Jiang. Convergence of Simplified and Stabilized Mixed Element Formats Based on Bubble Function for the Stokes Problem[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1073-1079. |
[1] |
Brezzi F,Douglas J.Stabilized mixed methods for the Stokes problem[J].Numer Math,1988,53(2):225-235.
|
[2] |
Fix G J,Gunzburger M D,Nicolaides R A.On mixed finite element methods for the first elliptic systems[J].Numer Math,1981,37(1):29-48.
|
[3] |
Neittanmki P,Picard R.On finite element approximation of the gradient for the solution of Poisson equation[J].Numer Math,1981,37(3):333-337.
|
[4] |
Pehlivanov A I,Carey G F.Error estimates for least-squares finite elements[J].M2AN,1994,28(5):499-516.
|
[5] |
Russo A.A posteriori error estimators for the Stokes problems[J].Appl Math Lett,1995,8(1):1-4.
|
[6] |
Zhou T X,Feng M F.A least squares Petrov-Galerkin finite element method for the staionary Navier-Stokes equations[J].Math Comp,1993,60(202):531-543.
|
[7] |
周天孝.基于鞍点问题对偶组合的有限元法及其理论[J].中国科学(E辑),1997,27(1):75-87.
|
[8] |
Girault V,Raviart P A.Finite Element Approximations of the Navier-Stokes Equations,Theorem and Algorithms[M].Series in Computational Mathematics,Springer-Verlag,1986:1-210.
|
[9] |
罗振东.有限元混合法理论基础及其应用[M].济南:山东教育出版社,1996,32-144.
|
[10] |
Brezzi F,Fortin M.Mixed and Hybrid Finite Element Methods[M].New York,Berlin,Heidelberg:Springer-Verlag,1991,1-190.
|