Citation: | TIAN Li-xin, XU Bo-qiang, LIU Zeng-rong. Wavelet Approximate Inertial Manifold and Numerical Solution of Burgers' Equation[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1013-1024. |
[1] |
Temam R. Infinite Dimensional Dynamical System in Mechanics and Physics[M]. Belin:Springer-Verlag,1988.
|
[2] |
TIAN Li-xin. Wavelet approximate inertial manifold in nonlinear solitary wave equation[J]. J Math Phy,2000,41(8):5771-5792.
|
[3] |
Gomes Soina M,Cortina Elsa. Convergence estimate for the wavelet Galerkin method[J]. SIAM J Num Anal,1996,33(1):149-161.
|
[4] |
Perrier V,Basdevant C. Periodical wavelet analysis[J]. Rech Aerosp,1989,3(1):54-67.
|
[5] |
Bacry E,Mallat S,Colau G Papaue. A wavelet based space-time adaptive numerical method for partial differential equations[J]. Math Mod Numer Anal,1992,26(4):793-834.
|
[6] |
许伯强,田立新. 周期小波基下Burgers方程的数值解[J]. 江苏理工大学学报,2001,22(3):1-6.
|
[7] |
田立新,储志俊,刘曾荣,等. 低模态下弱阻尼KdV方程约化形式的数值分析[J]. 应用数学和力学,2000,21(10):1013-1020.
|