Citation: | LI Xin-ye, CHEN Yu-shu, WU Zhi-qiang. Singular Analysis of Bifurcation of Nonlinear Normal Modes for a Class of Systems With Dual Internal Resonances[J]. Applied Mathematics and Mechanics, 2002, 23(10): 997-1007. |
[1] |
Rosenberg R M. On normal vibration of a general class of nonlinear dual-mode systems[J]. Journal of Applied Mechanics,1961,28:275-283.
|
[2] |
Atkinson C P,Beverly T. A Study of nonlinearly related modal solutions of coupled nonlinear systems by supersition technique[J]. Journal of Applied Mechanics,1965,32:359-373.
|
[3] |
Jonson T L,Rand R H. On the existence and bifurcation of minimal modes[J]. International Journal of Nonlinear Mechanics,1979,14:1-12.
|
[4] |
Anand G V. Nature mode of a coupled nonlinear system[J]. International Journal of Nonlinear Mechanics,1972,7:81-91.
|
[5] |
Yen D. On the normal modes of nonlinear dual-mass systems[J]. International Journal of Nonlinear Mechanics,1974,9:45-53.
|
[6] |
Shaw S W,Pierre C. Normal modes for nonlinear vibrating systems[J]. Journal of Sound and Vibration,1993,164(1):85-124.
|
[7] |
Nayfeh A,Lacabbonara W,Chin Char-Ming. Nonlinear normal modes of buckled beams:three-to-one and one-to-one internal resonances[J]. Nonlinear Dynamics,1999,18:253-273.
|
[8] |
Nayfeh A H,Chin C,Nayfeh S A. On nonlinear normal modes of systems with internal resonance[J]. Journal of Vibration and Acoustics,1994,118:340-345.
|
[9] |
Caughey T K,Vakakis A F,Sivo J M. Analytical study of similar normal modes and their bifurcation in a class of strongly nonlinear system[J]. International Journal of Nonlinear Mechanics,1990,25(5):521-533.
|
[10] |
King M E,Vakakis A F. An Energy-based formulation for computing nonlinear normal modes in undamped continuous systems[J]. Journal of Vibration and Acoustics,1994,116:332-340.
|
[11] |
Vakakis A F,Rand R H. Normal modes and global dynamics of a two-degree-of-freedom nonlinear system-Ⅰ Low energies[J]. International Journal of Nonlinear Mechanics,1992,27(5):861-874.
|
[12] |
Vakakis A F,Vakakis R H,Rand R H. Normal modes and global dynamics of a two-degree-of-freedom nonlinear system-Ⅱ High energies[J]. International Journal of Nonlinear Mechanics,1992,27(5):875-888.
|
[13] |
李欣业. 多自由度内共振系统的非线性模态及其分岔[D]. 博士论文.天津:天津大学,2000,49-59.
|
[14] |
CHEN Yu-shu,Andrew Y T Leung. Bifurcation and Chaos in Engineering[M]. London:Springer-Verlag London Limited,1998,220-234.
|
[15] |
唐云. 对称性分岔理论基础[M]. 北京:科学出版社,1998,135-141.
|
[16] |
刘济科,赵令诚,方同. 非线性系统的模态分岔与模态局部化现象[J]. 力学学报,1995,27(5):614-617.
|
[17] |
Rand R H. Nonlinear normal modes in a two degrees of freedom system[J]. Journal of Applied Mechanics,1971,38:561-573.
|