ZHANG Gui, XIANG Jie. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model(Ⅱ)-The Lower Bound on the Disturbance Energy and Potential Enstrophy to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1195-1202.
Citation: ZHANG Gui, XIANG Jie. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model(Ⅱ)-The Lower Bound on the Disturbance Energy and Potential Enstrophy to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1195-1202.

Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model(Ⅱ)-The Lower Bound on the Disturbance Energy and Potential Enstrophy to the Nonlinearly Unstable Basic Flow

  • Received Date: 2001-11-29
  • Rev Recd Date: 2002-05-25
  • Publish Date: 2002-11-15
  • On the basis of the nonlinear stability theorem in the context of Arnol'd's second theorem for the generalized Phillips model,nonlinear saturation of baroclinic instability in the generalized Phillips model is investigated.The lower bound on the disturbance energy and potential enstrophy to the nonlinearly unstable basic flow in the generalized Phillips model is presented,which indicates that there may exist an allocation between a nonlinearly unstable basic flow and a growing disturbance.
  • loading
  • [1]
    张瑰.广义Phillips模式的非线性稳定性判据[J].空军气象学院学报,1999,20(2):133-143.
    [2]
    张瑰,项杰,李东辉.广义Phillips模式非线性不稳定的饱和问题(Ⅰ)——基流不稳定时扰动演变的上界估计[J].应用数学和力学,2002,23(1):73-81.
    [3]
    Shepherd T G. Nonlinear saturation of baroclinic instability,Part-one:the two-layer model[J].Journal of the Atmospheric Sciences,1998,45(14):2014-2025.
    [4]
    Shepherd T G. Nonlinear saturation of baroclinic instability,Part-two:Continuously-statified fluid[J].Journal of the Atmospheric Sciences,1989,46(7):888-907.
    [5]
    Shepherd T G. Nonlinear saturation of baroclinic instability,part-three:bounds on the energy[J].Journal of the Atmospheric Sciences,1993,50(16):2697-2709.
    [6]
    MU Mu.Nonlinear stability theorem of two-dimensional quasi-geostrophic motions,geophys, Astrophy[J].Fluid Dynamics,1992,65(1):57-76.
    [7]
    Paret J,Vanneste J.Nonlinear saturation of baroclinic instability in a three-layer model[J].Journal of the Atmospheric Sciences,1996,53(20):2905-2917.
    [8]
    Cho H R, Shepherd T G, Vladimirov V A. Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J].Journal of the Atmospheric Sciences,1993,50(6):822-834
    [9]
    MU Mu,Shepherd T G, Swanson K. On nonlinear symmetric stability and the nonlinear saturation of symmetric instability[J].Journal of the Atmospheric Sciences,1996,53(20):2918-2923.
    [10]
    ZENG Qing-cun. Variational Principle of instability of atmosphic motions[J].Adv Atmos Sci,1989,6(2):137-172.
    [11]
    XIANG Jie,MU Mu.Lower bound of disturbances for the nonlinearly unstable basic flow in the phillips model[A].In:CHINE Wei-zang, Ed.Proceeding of the Third International Conference on Nonlinear Mechanics[C].Shanghai,1998:548-553.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2067) PDF downloads(724) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return